Three-phase electrical energy meter

3MEM80 User and Installation manual

	ЗМЕМ80-ВРО- MID	3MEM80-BMB-MID	3MEM80-BEVRSPO- MID	3MEM80- BEVRSPO
General hardware features				
MID approval	•	•	•	х
Pulse output S01	•	•	•	•
Pulse output SO2	•	×	×	×
Tariff input	•	•	•	•
85°C display	•	•	•	•
MODBUS comm. Protocol RS485	×	×	•	•
M-bus serial comm.	×	•	×	×

Security Advices and Warnings

Please read this chapter carefully and examine the equipment carefully for potential damages which might arise during transport and to become familiar with it before continue to install, energize and work with a three-phase energy meter 3MEM80.

This chapter deals with important information and warnings that should be considered for safe installation and handling with a device in order to assure its correct use and continuous operation.

Everyone using the product should become familiar with the contents of chapter »Security Advices and Warnings«.

If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

PLEASE NOTE

This booklet contains instructions for installation and use of three-phase energy meter 3MEM80. Installation and use of a device also includes handling with dangerous currents and voltages therefore should be installed, operated, serviced and maintained by qualified personnel only. ETI Company assumes no responsibility in connection with installation and use of the product. If there is any doubt regarding installation and use of the system in which the device is used for measuring or supervision, please contact a person who is responsible for installation of such system.

Before switching the device ON

Check the following before switching on the device:

- Nominal voltage.
- Terminals integrity.
- Protection fuse for voltage inputs (recommended maximal external fuse size is 80 A).
- External switch or circuit breaker must be included in the installation for disconnection of the devices' power supply. It must be suitably located and properly marked for reliable disconnection of the device when needed.
- Proper connection and voltage level of I/O module.

Used symbols on devices' housing and labels

SYMBOL	EXPLANATION
$\frac{1}{2}$	Three-phase 4-wire connection (3W4).
ஃ	Three-phase 3-wire 3 system connection (3W3).
V	Three-phase 3-wire 2 system connection (2W3 Aron connection).
J	Single-phase connection (1W).
•	WARNING
<u>_!\</u>	Indicates situations where careful reading of this manual is required and following requested steps to avoid potential injury is advised.
	Double insulation in compliance with the EN 61010–1: 2010 standard.
NFC	NFC communication.
))	IR - infrared (optical) communication.

SYMBOL	EXPLANATION
Modbus	Modbus communication.
	Compliance of the product with directive 2002/96/EC, as first priority, the prevention of waste electrical and electronic equipment (WEEE), and in addition, the reuse, recycling and other forms of recovery of such wastes so as to reduce the disposal of waste. It also seeks to improve the environmental performance of all operators involved in the life cycle of electrical and electronic equipment.
CE	Compliance of the product with European CE directives.

Disposal

It is strongly recommended that electrical and electronic equipment (WEEE) is not deposit as municipal waste. The manufacturer or provider shall take waste electrical and electronic equipment free of charge. The complete procedure after lifetime should comply with the Directive 2002/96/EC about restriction on the use of certain hazardous substances in electrical and electronic equipment.

Table of contents

1 BASIC DESCRIPTION AND OPERATION

	1.1	INTRODUCTION	2	
	1.2	DESCRIPTION OF THE DEVICE	2	
	1.3	THREE-PHASE ENERGY METERS APPLICATION	3	
	1.4	MAIN FEATURES	4	
<u>2</u>	CONNECTION			5
	2.1	Mounting	6	
	2.2	ELECTRICAL CONNECTION	7	
<u>3</u>	FIRST STEPS			12
	3.1	Keyboard Navigation	13	
	3.2	LCD USER INTERFACE	13	
	3.3	CALIBRATION AND SETTING PARAMETERS	26	
	3.4	FREEZE COUNTERS	27	
	3.5	NFC settings	29	
<u>4</u>	MEASUREMENT			30
	4.1	SELECTION OF AVAILABLE QUANTITIES	31	
	4.2	CALCULATION AND DISPLAY OF MEASUREMENTS	31	
<u>5</u>	TECHNICAL DATA			34
	5.1	Accuracy	35	
	5.2	MECHANICAL CHARACTERISTICS OF INPUT	35	
	5.4	ELECTRICAL CHARACTERISTICS OF INPUT	36	
	5.5	SAFETY AND AMBIENT CONDITIONS	37	
	5.6	EU DIRECTIVES CONFORMITY	38	
	5.7	DIMENSIONS	38	
<u>6</u>	ABBREVIATION/GLOS	SSARY		39
_				
Z	APPENDICES			40
		APPENDIX A: MODBUS COMMUNICATION PROTOCOL	40	
	7.2	Appendix C: Equations	64	

1

1 BASIC DESCRIPTION AND OPERATION

The following chapter presents basic information about a three-phase energy meter 3MEM80 required to understand its purpose, applicability and basic features connected to its operation. In this chapter you will find:

1.	1	INTRODUCTION	2
1.	2	DESCRIPTION OF THE DEVICE	2
1.	3	THREE-PHASE ENERGY METERS APPLICATION	3
1.	4	MAIN FEATURES	4

1.1 Introduction

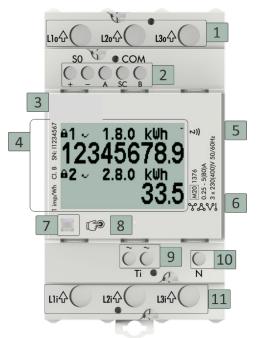
Regarding the options of a three phase energy meter, different chapters should be considered since it might vary in functionality.

1.1.1 Tables

Supported functions and measurements are listed in tables. Symbols in tables indicate support of enabled functions for different connection schemes. Additionally a legend is placed below table of used symbols. Meaning of symbols is:

Function is supported •

1.2.1 Appearance


- × Function is not supported
- 0 Symbol meaning varies and is described in the legend below the table

1.2 **Description of the device**

The three-phase energy meters **3MEM80** are intended for energy measurements in three-phase electrical power network and can be used in residential, industrial and utility applications. Meters measure energy directly in 3-wire and 4-wire networks according to the principle of fast sampling of voltage and current signals. A built-in microprocessor calculates active/reactive/apparent power and energy, current, voltage, frequency, power factor, power angle and frequency (for each phase and total sum) from the measured signals. This smart meter can also perform basic harmonic analysis (THDU, THDI). This enables quick overview of harmonic distortion either coming from a network or generated by the load. Microprocessor also controls LCD, LED, IR communication and optional extensions.

A capacitive touch button on the front of the energy meter enables access to switch between measurements and settings in the menu.

Connecting terminals can be sealed up against non-authorised access with protection covers. The meters are built to be fastened according to EN 60715 standard.

1. Current terminals - to load

- AUX terminals (options): 2.
- RS485 (MODBus)
 - PULSE OUTPUT (SO)
- NFC 3.
- 4. Information display
- 5. **DIN-Rail fitting**
- IR communication port -ON SIDE 6.
- LED indicator
- 9. Tariff clock input

Pulse rate:

LED on:

- 10. Neutral input
- Current terminal source (max 80 A)

LCD		
	Display type:	Matrix (128 x 64)
	Illumination:	white (normal operation)
		red (alarm indication)
LED		
	Colour:	red

Figure 1: Appearance of three-phase electric energy meter 3MEM80

- 7.
- 8. Cap touch

- 11. LCD

1000 imp/kWh

no load indication

1.3 Three-phase energy meters application

Optional the meter can be equipped with the following communications:

RS485 serial communication with the MODBUS protocol,

Communication modules enables data transmission and thus connection of the measuring places into the network for the control and management with energy.

Besides of communication modules, there are also tariff input and built-in pulse output.

Tariff input provides measurement of two tariffs for selected energy registers.

Pulse output $SO_{1,2}$ is sending data to the devices for checking and monitoring consumed energy.

Energy meters are equipped with **NFC communication** for easy setting and downloading data via mobile app.

NFC communication is implemented for parametrization as well as for reading data (e.g. counters, measurements, etc.) from the smart meter.

PLEASE NOTE

Mobile application for NFC communication is not available at our company.

1.4 Main features

- Three-phase direct connected DIN-rail mounting meters up to maximum current 80 A (I_{max}).
- Class 1 for active energy according to EN 62053-21 and B according to EN 50470-3 .
- Class 2 for reactive energy according to IEC 62053-23.
- Bidirectional energy measurement (import/export).
- Temperature range climatic condition as indoor meter according EN 50470.
- Display segment Matrix LCD.
- Multifunctional front red LED.
- IR serial communication.
- Measurement of:
 - o **power** (active, reactive, apparent) and **energy** (each phase and total),
 - o voltage (each phase),
 - o current (each phase),
 - phase to phase voltage,
 - o phase to phase angle,
 - o frequency,
 - o **power factor** (each phase and total),
 - **power angle** (each phase and total),
 - o active tariff (option),
 - THD of voltage,
 - THD of current.
- **RS485 Serial communication** (3MEM80-BEVRSPO).
- NFC (option) enables an easy setting and downloading meter data.
 - Tariff input (230 V AC).
 - Tariff management (up to 6 tariffs manageable via communication).
 - -25°C 70°C ambient operation temperature.
- **3-DIN rail** width mounting according to EN 60715.
- Sealable terminal cover.

2 CONNECTION

This chapter deals with the instructions for three-phase electrical energy meter 3MEM80 connection. Both the use and connection of the device includes handling with dangerous currents and voltages. Connection shall therefore be performed ONLY by a qualified person using an appropriate equipment. ETI, d.o.o. does not take any responsibility regarding the use and connection. If any doubt occurs regarding connection and use in the system which device is intended for, please contact a person who is responsible for such installations.

In this chapter you will find:

2.1	Mounting	6
2.2	ELECTRICAL CONNECTION	7

2.1 Mounting

Threee-phase electrical energy meter 3MEM80 is intended for DIN-rail mounting. In case of using the stranded wire, the ferrule must be attached before the mounting.

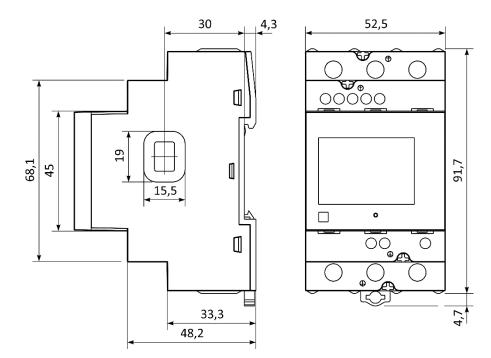


Figure 2: Dimensional drawing and rear connection terminals position

2.2 Electrical connection

WARNING!

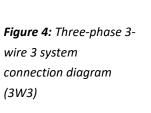
Wrong or incomplete connection of voltage or other terminals can cause non-operation or damage to the device.

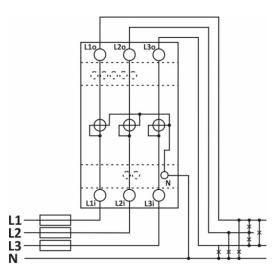
Installation must be carried out and inspected by a specialist or under his supervision. When working on the meter, switch off the mains voltage! It is recommended to use 3x80 A fuse for the line protection.

Meter is used for direct connection into the three-phase four-wire or three-wire networks. It can be used also in single-phase network, connected in the phase L3. Three-wire 2 system connection network measures only phase to phase values (phase values are not available). After electrical installation for MID approved meters the installation should be also set and confirmed in software. Until installation confirmation warning Installation not set is displayed on LCD. For installation setting see item 3.2.3.5.3. Meter can be equipped with different modules. Pictures below are showing equipped combinations.

PLEASE NOTE

Setting of installation can be done just once, so take care to confirm the connection which fits the required connection and required use.


Recommended installation:


- 1 Mounting to DIN rail according to DIN EN60715
- 2 Power contacts:
 - a. Power contacts capacity 2.5 mm² 25 mm²
 - b. Connection screws M5
 - c. Max torque 3.5 Nm
- 3 Auxiliary terminals:
 - a. Auxiliary terminals contact capacity 0.05 mm² 1.5 mm²
 - b. Auxiliary terminals screws M3
 - c. Max torque 1.2 Nm

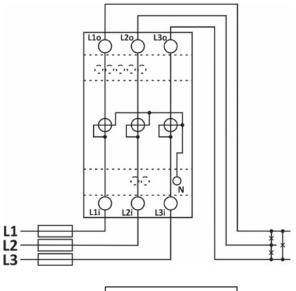

Mark	Meaning
L1,2,3	Line input
Ν	Neutral input

Table 2: Marks used on wire connection diagrams

Figure 3: Three-phase 4wire connection diagram (3W4)

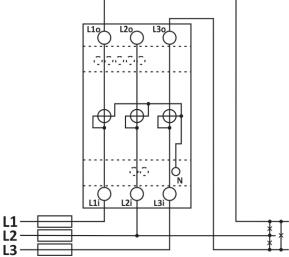
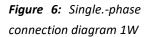



Figure 5: Three-phase 3-wire2systemconnectiondiagram(2W3)

Ī1o L20 L30 -2--2-Ń .O $_{11}O$ L N Supply + **Impulse Counter** 0000**50**⁺ **50**⁺ **50**⁻ **50**⁻ **Impulse Counter** or Controller Tariff ÕÕ ŝ Tariff Clock 07 \sim 230V \sim Supply + Impulse Counter 00000 + - A SC B S01 RS485 SC B RS485 - Modbus Tariff - - -ÕÕ ÷ **Tariff Clock** 0 () \sim 230V \sim

Figure 7: Connection diagram of SO output, impulse counter, impulse counter or controller and tariff clock

Figure 8: Connection diagram of SO output, impulse counter, RS485 - Modbus and tariff clock

I

2.2.1 Auxiliary circuit connection

For communication with outside world multiple manners are used:

- IR communication module (option) using MODBUS protocol. It can be used for setting and testing the meter using USB adapter.
- **S0 output** module is used for counting number of pulses depending on consumed energy.
- **RS485 (option)** communication module is galvanic isolated from meter main circuit. It enables setting the meter, data readout in the network and tariff setting.
- NFC (option) enables an easy setting and downloading meter data via mobile app.
- Tariff input (option) module is used to set active tariff.
- LED diode is used for indication of no-load condition and test output proportional to measured active energy. It can be also switched to reactive energy for test purpose using IR communication or cap touch.
- A capacitive touch button enables access to switch between measurements and settings in the menu.

Auxiliary terminal			
Pulse output (S01, S02)	+	-	
Tariff input	~	~	
M-bus (COM)	M+	M-	
RS485 (COM)	А	*SC	В

*It is intended to be used for shielding for RS485.

Table 3: Survey of auxiliary circuit connection

PLEASE NOTE

Check markings on the side of the meter to check what modules are built in.

3 FIRST STEPS

Programming a three-phase electrical energy meter 3MEM80 is very transparent and user friendly. Numerous settings are organized in groups according to their functionality.

In this chapter you will find basic programming steps:

3.1	Keyboard navigation	13
3.2	LCD USER INTERFACE	13

- 3.3 CALIBRATION AND SETTING PARAMETERS 26
- 3.4 Freeze counters 27

3.1 Keyboard navigation

The capacitive touch (symbol below) is used for shifting between screens, for selecting the specific segment of the menu and for confirming the settings.

PLEASE NOTE

When turning on 3MEM80, the calibration of the capacitive touch sensor begins. Do not disturb the sensor at least for five seconds after turning on the device. If the sensor is disturbed during calibration, it will restart the calibration process.

Press the capacitive touch (**short-touch**) to move forward between the screens. **Long-touch** (approximately 3 seconds) is used to confirm the selection, to sett the next digit, or to enter the submenu. **Very-long-touch** (approximately 5 seconds) considers the function *ESC* (during the parameter setting the screen goes back to the explicit parameter in the other cases the LCD returns in the initial cycling mode).

If the screen backlight is off, the first touch turns on the backlight, then the long-touch to view the main menu.

If the lock of the capacitive touch is available, to activate it, a very long-touch is needed.

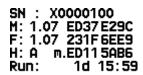


Figure 10: The symbol of capacitive touch

3.2 LCD User Interface

3.2.1 LCD display at start up

SN: serial number
MID: Version and CRC of Part 2
FUN: Version and CRC of Part 2
HW: Hardware version; m. : CRC of phase measuring modules (high, low)

Run: Operational time (days hours minutes)

After the electrical connection, the display shows an info screen (picture on top) for two seconds. The following is automatic cycling of measurements on the screen regarding the period that is defined in settings (for more details see chapter Settings, Device settings, General settings, Display).

Installation Not set

Measurements consist of energy counters and other actual measured values. The MID approved meter shows a warning screen (picture on the right) *Installation Not set* every 5 seconds if the installation of connection mode is not set yet.

Besides the cycling of measurements, one can enter the display menu structure by using a long touch. If the capacitive touch is not pressed for more than 90 seconds, the cycling of measurements automatically begines again. Hold page function is a function that locks a measurement screen. Therefore, even if the menu structure is entered and left for more than 90 seconds, that specific measurement screen will be shown. This is also in case of a powerdown.

The explicit settings can be changed through the Setting menu (for more details see chapter Display of device setting), MiQen software or mobile app using NFC.

PLEASE NOTE

All settings that are performed can be subsequently changed via MiQen by means of communication.

PLEASE NOTE

The meter can be set to Test measuring mode which displays energy registers with better resolution. The test mode is used for test purposes during type testing and test of meter constant during initial verification. After power off meter automatically goes back to normal operation.

3.2.2 Energy counters

There are two sets of energy registers – four non-resettable registers which can be assigned for active energy (MID approved), reactive energy (national approval) or apparent energy (no approval). The meter with MID approval should have at least one register with active energy measurement. There are additional 16 energy registers which can be parameterised by the user regarding type of energy, active quadrants, direction of counting and tariff and they can also be resetted using MODBUS command or cap touch.

On the LCD up to two energy counters are displayed. There is the lock sign for the fixed legally relevant non-resettable counters, the counter designation, the sign of currently active register, an additional code and the unit. For the code the user can choose between the OBIS code or letter description code. The 9-digit numerical number shows the value of the energy. The decimal dot is fixed and resolution is fixed to 100 Wh. The screen is displayed for the pre-set cyclic period.

Legally relevant non-resettable registers are designated with letters 1 to 4 after the lock sign , while
legally non-relevant resettable registers are designated with 01 to 16. The code is specified in table 4
and table 5.

Register description E1 to E4	OBIS code	Letter description code
Active energy Q1+Q4 – all tariffs	1.8.0	A.I.0
Active energy Q1+Q4 – tariff 1 or 2	1.8.1 or 1.8.2	A.I.1 or A.I.2
Active energy Q2+Q3 – all tariffs	2.8.0	A.E.0
Active energy Q2+Q3 – tariff 1 or 2	2.8.1 or 2.8.2	A.E.1 or A.E.2
Active absolute energy– all tariffs (Abs(Q1+Q4) + abs(Q2+Q3))	15.8.0	A.A.0
Active absolute energy– tariff 1 or 2	15.8.1 or 15.8.2	A.A.1 or A.A.2
(Abs(Q1+Q4) + abs(Q2+Q3))		
Reactive energy – Q1+Q2 - all tariffs	3.8.0	r.I.0
Reactive energy – Q1+Q2 - tariff 1 or 2	3.8.1 or 3.8.2	r.l.1 or r.l.2
Reactive energy – Q3+Q4 - all tariffs	4.8.0	r.E.0
Reactive energy – Q3+Q4 - tariff 1 or 2	4.8.1 or 4.8.2	r.E.1 or r.E.2
Reactive absolute energy– all tariffs	95.8.0 (manufacturer specification)	r.A.0
Reactive absolute energy-tariff 1 or 2	95.8.1 or 95.8.2 (manufacturer specification)	r.A.1 or r.A.2
Apparent absolute energy-all tariffs	9.8.0	S.A.0
Apparent absolute energy- tariff 1 or 2	9.8.1 or 9.8.2	S.A.1 or S.A.2

 Table 4: OBIS code and letter description code for E1 to E4

Active energy Q1+Q4 - all tariffsActive energy Q1+Q4 - tariff 1 to 6All energy types - tariff 1 to 6All energy types - mixed tariffs(example tariff 1 and tariff 2)Active energy Q2+Q3 - all tariffsActive absolute energy - all tariffs(Abs(Q1+Q4) + abs(Q2+Q3))Active energy (signed) - all tariffs(Abs(Q1+Q4) - abs(Q2+Q3))	1.8.0 1.8.1 to 1.8.6 x.x.1 to x.x.6 x.x.9 2.8.0 15.8.0 16.8.0 17.8.0 18.8.0	A.I.0 A.I.1 to A.I.6 x.x.1.to x.x.6 x.x A.E.0 A.A.0 A.b.0 A0
All energy types – tariff 1 to 6 All energy types – mixed tariffs (example tariff 1 and tariff 2) Active energy Q2+Q3 – all tariffs Active absolute energy– all tariffs (Abs(Q1+Q4) + abs(Q2+Q3)) Active energy (signed)– all tariffs	x.x.1 to x.x.6 x.x.9 2.8.0 15.8.0 16.8.0 17.8.0	x.x.1.to x.x.6 x.x A.E.0 A.A.0 A.b.0 A0
All energy types – mixed tariffs (example tariff 1 and tariff 2) Active energy Q2+Q3 – all tariffs Active absolute energy– all tariffs (Abs(Q1+Q4) + abs(Q2+Q3)) Active energy (signed)– all tariffs	x.x.9 2.8.0 15.8.0 16.8.0 17.8.0	x.x A.E.0 A.A.0 A.b.0 A0
(example tariff 1 and tariff 2) Active energy Q2+Q3 – all tariffs Active absolute energy– all tariffs (Abs(Q1+Q4) + abs(Q2+Q3)) Active energy (signed)– all tariffs	2.8.0 15.8.0 16.8.0 17.8.0	A.E.0 A.A.0 A.b.0 A0
Active absolute energy– all tariffs (Abs(Q1+Q4) + abs(Q2+Q3)) Active energy (signed)– all tariffs	15.8.0 16.8.0 17.8.0	A.A.0 A.b.0 A0
(Abs(Q1+Q4) + abs(Q2+Q3)) Active energy (signed)– all tariffs	16.8.0 17.8.0	A.b.0 A0
	17.8.0	A0
$(Au3(Q1^{+}Q4) - au3(Q2^{+}Q3))$		
Active energy Q1– all tariffs	18.8.0	
Active energy Q2– all tariffs	10.0.0	A0
Active energy Q3– all tariffs	19.8.0	A0
Active energy Q4– all tariffs	20.8.0	A0
Reactive energy – Q1+Q2 - all tariffs	3.8.0	r.l.0
Reactive energy – Q3+Q4 - all tariffs	4.8.0	r.E.0
Reactive energy – Q1 - all tariffs	5.8.0	r0
Reactive energy – Q2 - all tariffs	6.8.0	r0
Reactive energy – Q3 - all tariffs	7.8.0	r0
Reactive energy – Q4 - all tariffs	8.8.0	r0
Reactive absolute energy- all tariffs	95.8.0 (manufacturer specification)	r.A.0
Apparent absolute energy-all tariffs	9.8.0	S.A.0
Apparent energy –Q1+Q4 – all tariffs	9.8.0	S.I.O
Apparent energy – Q2+Q3 – all tariffs	10.8.0	S.E.0
Other unspecified custom setting regarding power, quadrants	0.0.y γ (0,1,2,3,4,9)	xy x x (A,r,S), y (0,1,2,3,4,» «)

 Table 5: OBIS code and letter description code for C1 to C16

I

3.2.3 Initial display menu structure

The following is a main menu divided into several sub-menus (ESC, Measurements, Info, Settings, Resets, Installation).

Main menu ESC Measurements Info Settings Resets Installation

www.ETI.eu / Temperature 27 °C

3.2.3.1 ESC

Main menu	
ESC	
Measurements	
Info	
Settings	
Resets	
www.iskra.eu	

Main menu

Measurements Info Settings <u>esets</u>

www.iskra.eu

Long-touch ESC, the screen cyclings between chosen measurements on default mode. The mode could be changed in MiQen software, to counter n1 or to hold page (hold the page of the selected measurement). Short-touch to shift between sub-menus.

3.2.3.2 Display of device measurements

Short-touch Measurements, the sub-menu is entered (ESC, Present values, Limits). Long-touch ESC to return to the main menu. Longtouch Present values to observe the specifics measurements or Limits to observe the limits.

Measurements	
ESC	
Present values	
Limits	
⇔Main menu	
Present values	
ESC	
Voltage	
Current	
Power	
PF & Power angle	
Frequency	
Energy	
THD	
Custom	
Overwiew	
←Measurements	-

⇔Measurements

Long- touch Present values, the sub-menu is entered (ESC, Voltage, Current, Power, PF & Power angle, Frequency, Energy, THD, Custom, Overview). Long-touch ESC to return to the measurements menu.

3.2.3.2.1 Present values

> VOLTAGE

<u>Present values</u> ESC Voltage Murrent Power <u>PF & Power angle</u> ⇔ Measurements

Long-touch Voltage to observe the phase voltage, phase to phase voltage, voltage angle, average values of phase voltage, and average values of phase to phase voltage.

Phase voltage 1,2,3	Phase to phase voltage	Voltage angle	Averages
18.5∍	$\begin{array}{c} 0.0_{0} \lor {}^{\text{U12}} \\ 226.4_{4} \lor {}^{\text{U23}} \\ 226.4_{1} \lor {}^{\text{U31}} \end{array}$	+0.0° ° ²¹² +0.0° ° ²³ +0.0° ° ²³	82.77 v ^{ux} 153.1o v ^{ux}

CURRENT ≻

<u>Present values</u> Voltage Current **Powen** PF & Powen

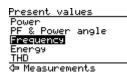
Present values Current

PF & Power angle

& Power angle

<u>Present values</u> ESC Voltage Dumranu Power PF & Power angle	Long- touch Cur	rent to observe the phase cur Phase current	rrent, and average current. Average current
↔ Measurements		^A ^{I1} ^A ^{I2} 0.000 _{0 A} ^{I3}	0.000₀

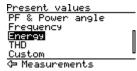
> POWER


Long- touch Power to observe the power (active, reactive, apparent), phase power (active, reactive, apparent).

Frequency Measurements	, , , , , , , , , , , ,		
Power	Phase active power	Phase reactive power	Phase apparent power
0.00 ⊌ ^P 0.00 var ≥ 0.00 var S	⊌ P1 ⊎ P2 0.0o ⊌ P3	Q1 Q2 0.00 var ≥	0.0 _{0 va} s1 va s2 va s3

> PF & POWER ANGLE

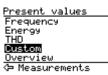
Long- touch PF & Power angle to observe the power factor and power angle, phase power factor and phase power angle.


Frequency Energy Preasurement	phase power fact	or and phase power angle.	
	Power factor, power angle	Phase power factor	Phase power angle
	+1.000 ∍ ^{PF} +0.0₀°≁	PF1 PF2 +1.000 ∍ ^{PF3}	[•] •1 • ² +0.00 ^{• •3}

> FREQUENCY

50.003₅ f_{iz}

> ENERGY


Pres Freg Ener Long- touch *Energy* to observe the measured energy. Two different types of energy registers are shown (resettable and non-resettable). Disabled energy counters are not shown on the screen. The resettable energy

counter (Non-MID meters) can be reset, while the non-resettable (the symbol of lock representing it) has been measuring the quantity continuously. The resettable energy counters enable to set the value of measured energy (see chapter Settings, energy, counters). The energy counter you reset starts to remeasure the value from the zero.

/	Measured	energy	ſ	Measured	energy	Meas	sured energ	y (resettable)	_
≏1 ≏2	1.8.0 k 2.8.0 k	0.0	₽3 ₽4	3.8.0 4.8.0	^{kvarh} 0.0 ^{kvarh} 0.0	01 02	1.8.0 2.8.0	^{k⊎h} 0.0 ^{k⊎h} 0.0	•
Measu	red energ	y (resettable)	Measu	red energy	/ (resettable)	Meas	sured energ	y (resettable)	
03 04	3.8.0 4.8.0	0.0 ^{kvarh} 0.0	05 06	1.8.0 2.8.0	^{k⊎h} 0.0 ^{k⊎h} 0.0	07 08	3.8.0 4.8.0	kvarh 0.0 kvarh 0.0	•
<u>sent valu</u> quency rgy tom <u>rview</u> leasureme		► THD Long- tou voltage.	ich <i>THD</i>		e the total ha	rmonic	distortion THD of		I
			-	0.	00 11%		1.9	9 %THD	

0.00 2TH0 0.00 2TH0 0.00 2TH0 1.99 xTHO 1.96 xTHO 1.96 xTHO

– ≻ сиѕтом

Long- touch *Custom* to observe the measurements of phase one, measurements of phase two, measurements of phase three and custom measurements.

Phase 1	Phase 2	Phase 3	Custom
17.82 v ^{U1} n 11 v P1	17.85 v U2 n 12 v P2	233.84 v ^{U3} 0.0000 r ¹³ 0.00 v ^{P3}	U1 17.87 V I1 0.0000 A P1 0.00 W + U2 17.88 V I2 0.0000 A

Present values Frequency Energy THD Custom **Overview** ↔ Measurements

Overview

Long- touch *Overview* to observe the custom screens.

Values of measurements

UA 84.14 V P	+0.00
1 16.88 V P1	+0.00
2 16.90 V P2	+0.00
3 231.84 V P3	+0.00
1 0.0000 A 0	+0.00
1 0.0000 A 01	+0.00
2 0.0000 A 02	+0.00
3 0.0000 A 03	+0.00
U ₄ 151.79 V 49 12 6.00 V φ 23 227.71 V φ 31 227.68 V φ PF +1.000L φ PF1 +1.000L φ PF2 +1.000L φ PF3 +1.000L φ	9.984 Hz +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00

3.2.3.2.2 Limits

Measurem	ents
ESC	
Present	values
Limits	

Long- touch *Limits* to observe the limits set in settings (see chapter 4 Settings, Limits). Long- touch *ESC* to return to the measurements menu.

🗇 Main menu

Limits
ESC
Group 1: 1
Group 2:
Group 3:
Group 4:
←Measurements

Group 1	Group 2	Group 3	Group 4
GIL2	62L1 I1 > 96.00	63L1	64L1
GIL2	62L2	63L2	64L2
GIL3	62L3	63L3	64L3
GIL4	62L4	63L4	64L4

3.2.3.3 Display of device info

Main menu
ESC
Measurements
Info
Settings
Resets
uuu iskoo ou

------ Long- touch Info to view informations about the energy meter (name, date, hour, firmwhare/technical informations, informations of locking, error informations).

www.isk

kra.	eu Name	Instrument info	Date and hour
	Iskra IE38MD Energy Meter www.iskra.eu	Info SN : X0000100 MID: 1.07 ED37 E29C U 2 FUN: 1.07 231F 6EE9 L 0 HW : A m.ED11 5AB6 M×8 Run: 1d 16h 22' ☆ Main menu	Info 24.08.2020 12:49:57 Temperature 30.2°C
	Icon info	Error info	
	Info @ Locked © Clock not set ☞ Main menu	Info Error O Data CRC OO Code CRC OO ⊘ Main menu	

Instrument info abbreviations:

SN: serial number

MID: Version and CRC of Part 2, U: upgrade counter

FUN: Version and CRC of Part 2, L: unlock counter

HW: Hardware version, m. : CRC of phase measuring modules (high, low)

Run: Operational time (days hours minutes)

3.2.3.4 Display of device settings

Main menu Long- touch Settings to enter the sub menu (table below).

Measurements Info Sattings			Settings
Resets		_	ESC
Temperature	30.4°C		General
			Date & Time
			Communication
			LCD
			Security
			Energy

⊂Main menu

3.2.3.4.1 General

General
ESC
Language
⇐Settings

Long- touch *General*, the sub-menu is entered (ESC, Language). Long- touch *ESC* to return to the settings menu. Long- touch *Language* to set language (the options are shown in pictures below). Short-touch to chose the requested language, then long-touch *ESC* to confirm it.

Language	
©English	
OFrancais	I
ODeutsch	
QEspañol	
OSlovenski	
OK Select	

3.2.3.4.2 Date and time

Date & Time	
ESC	
Date Time	
Automatic S/W	time
🗇 Settings	

Long- touch *Date and time*, the sub-menu is entered (ESC, Date, Time. Automatic S/W time). Long-touch *ESC* to return to the settings menu. Long-touch *Date* to set the date and on *Time* to set the time. Long-touch *Automatic S/W time* to set automatically change between summer or

winter time.

PLEASE NOTE

The clock is for informational purposes only.

Date	Time	Automatic S/W time
DD.MM.YYYY 28.08.2020	9:47:47 9:47:47 9:47:47	Automatic S/W time ONo ®₩25
OK Select	OK Select	OK Select

3.2.3.4.3 Communication

Communication menu is available at M-bus and MODBus RS485 option (3MEM80MM and 3MEM80MD) and can be used for setting communication parameters (communication addresses, bits per second, parity and stop bits).

Communication
ESC
Device address
Bits per second
Parity
Stop bits
🗇 Settings

Long-touch *Communication*, the sub-menu is entered (ESC, Device address, Bits per second, Parity, Stop bits). Long-touch *ESC* to return to the settings menu.

OK Select

DEVICE ADRREESS Long-touch Device address to set the address number. Non configured devices have the same factory Modbus address set to 33. Short-touch to move between the numbers Long touch the selected number to cave the

move between the numbers. Long-touch the selected number to save the value. Very long-touch to save the device address.

BITS PER SECOND

Long-touch *Bits per second* to set the value of specific communication.

Bits per second	Bits per second
O 2400 bit/s 🛛	O 9600 bit/s
0 4800 bit/s	O 19200 bit/s
O 9600 bit/s	O 38400 bit/s
O 19200 bit/s 🛛 🖉	0 <u>57600 bit/s</u>
<u>O 38400 bit/s</u>	©115200 bit∕s
OK Select	OK Select

Parity ®None OOdd OEven

OK Select <u>Stop bits</u>

> PARITY

Set the party of communication (none, odd or even). Long-touch to set the selection.

STOP BITS

Set the stop bits of communication (1 or 2). Long press to set the selected value.


OK Select

3.2.3.4.4 LCD

LCD	
ESC	
Contrast	
Back light	
Back light	time off
LCD scroll	interval
🗇 Settings	

Long-touch *LCD*, the sub-menu is entered (ESC, Contrast, Backlight, Backlight time off, LCD scroll interval). Long-touch *ESC* to return to the settings menu.

Contrast

Long-touch *Contrast* to set the value of the contrast of the screen (from - 10 to 10). Long-touch the selected value to save the settings.

Long-touch *Backlight* to change the screen brightness (from 0 to 10). Long-touch the selected value to save the settings.

OK Select

<u>Back light time off</u>

_1 min.

OK Select

LCD scroll interval

_5 sec.

OK Select

Long-touch *Backlight time off* to set the period of turn off the backlight of the screen (from 0 to 9 minutes or no). Long-touch the selected value to save the settings.

Long-touch the *LCD scroll interval* to set the value of the interval of scrolling measurements (from 5 seconds to 65 seconds). Long-touch the selected value to save the settings.

3.2.3.4.5 Security

Security
ESC
Password level 1 Password level 2
Lock instrument
<u>Unlock instrument</u>
🗇 Settings

Long-touch Security, the sub-menu is entered (ESC, Password level 1, Password level 2, Lock instrument, unlock instrument). Long-touch ESC LCD returns to the settings menu.

A password consists of four letters taken from the British alphabet from A to Z. When setting a password, only the letter being set is visible while the others are covered with •.

Settings parameters are divided into single groups regarding security level: PL1 >password level 1, PL2 >password level 2 and BP >a backup password.

Password level 1 Long-touch Password level 1 to set the passworld (4 letters). Long-touch

Ажжж

OK Select

Long-touch Password level 2 to set the passworld (4 letters). Long-touch the selected letter to save the settings.

Unlock instrument

Ажжж

Long-touch *Lock instrument* to lock the meter.

Long-touch Unlock instrument to write the password for unlock (4 letters).

the selected letter to save the settings.

OK Select

Long-touch the selected letter to save the settings. 3.2.3.4.6 Energy

Energy	
ESC	
Active	tariff
LED tes	st.

Long-touch *Energy*, the sub-menu is entered (ESC, Active tariff, LED test). Long-touch ESC to return to the settings menu.

🗇 Settin	19S
©Tariff	input
OTariff	1
OTariff	2
	3
<u>OTariff</u>	4
OK Select	

Long-touch Active tariff to set the tariff (Tariff input, tariff 1, 2, 3, 4, 5, 6). Long-touch the selection. Tariff management is possible for 16 NON-MID counters. As default management of 2 tariffs is possible using tariff input.

In case all active MID registers from E1 to E4 are parameterized for cumulative energy (all tariffs) it is possible to set any single tariff as a set value. In this case, it is possible to switch 6 tariffs through a communication interface using the MODBUS register.

LED test	LED test
Normal	OP test
OP fast	QQ test "
OP fast cnt	OQ fast
OP test	<u>OQ fast cnt</u>
OQ test	Ol sec. Clock
OK Select	OK Select

Long-touch LED test to set specifics test. Long-touch the selection.

This function shall be used only for testing purposes during type testing and metrological verification of the meters.

Test modes:

Normal – 1000 imp/kWh, counter resolution 100 Wh/100 varh.

P fast (Test mode P Fast) – 100000 imp/kWh, counter resolution 1 Wh/1 varh.

P fast cnt (Test mode P Fast – counter only) – 1000 imp/kWh, counter resolution 1 Wh/1 varh.

P test (Test mode P) – 1000 imp/kWh, counter resolution 100 Wh/100 varh.

Q test (Test mode Q)– 1000 imp/kvarh, counter resolution 100 Wh/100 varh.

Q fast (Test mode Q fast) – 100000 imp/kvarh, counter resolution 1 Wh/1 varh.

Q fast cnt (Test mode Q fast - counter only) – 1000 imp/kvarh, counter resolution 1 Wh/1 varh. Long-touch LED No. of pulses to set the number of pulses (). Long-touch the selection.

3.2.3.5 Display of device resets

Main menu	
ESC	
Measurements	
Info	
Settings	
Settings Resets	
Temperature	30.5°C

Long-touch Reset, the sub-menu is entered (ESC, Energy counters, Reset alarm output).

Resets
ESC
Energy counters
Reset alarm output
⊂Main menu

3.2.3.5.1 Energy counters

<u>Resets</u> ESC Energy counters Reset alarm output	Enen ESC All Ener Ener Ener
🗇 Main menu	<> ₽ R€

counters energy counter 99 counter C1 counter counter **'**99

Long-touch Energy counters to chose the counter to reset (ESC, All energy counters, from energy counter C1 to C16). Longtouch ESC to return to the Resets.

3.2.3.5.2 Reset alarm output

Resets		
ESC		
Energy	count	ters
Reset a	alarm	output

 Long-touch the Reset alarm output to chose the alarm reset (ESC, no, yes). Long-touch ESC to return to Resets, long-touch No that the selected counter is not reset or Yes to reset the selected counter.

🗇 Main menu

<u>Resets</u> Energy counter C1 ESC No Yes

Installation Connection mode

3.2.3.5.3 Installation

Long-touch Installation to set the connection mode of the MID approved meter. Long-touch ESC LCD returns to the Main menu.

The connection mode can be set only once. Until the connection mode is

🗇 Main menu

Not set

<u>Installation</u>

Connection mode

not set, the warning screen appears every 5 seconds (Installation Not set). Long-touch Connection mode setting menu is entered to select one of three options (see picture below):

- 3W4, 1W, 3W3 Vector (Evaluation of the sum of phases),
- 3W4, 1W Arithmetic (Evaluation of individual phases),
- 2W3 Vector (Evaluation of the sum of phases).

Evaluation of individulal phases means that in case of opposite energy flow in different phases the energy is registered to both import and export registers taking into accout each individual phase. It is applicable only in 4-wire connection.

Import – export evaluation (example):

P1 = P, P2 = P, P3 = -P

Evaluation as the sum of phases - summated power Preg registered

Preg = P1 + P2 + P3 = P + P - P = P(+)Active power P(+) registered in counter A+. Evaluation regarding individual phases: Preg = P(+) + P(+) + P(-) = 2P(+) + P(-)

Active power 2P(+) registered in counter A+ Active power P(-) registered in counter A-

on mode Not. set. ,3₩3 - Vector - Arithmetic 354. .16 Vector

OK Select

Default value is the common three-phase 4-wire connection (3W4) which enables also single-phase measurement in L3 (1W) and 3-system 3-wire connection (3W3) with import – export evaluation as the sum of phases. Also this connection has to be confirmed to block further changes and after confirmation the message Installation not set is switched off.

In case 4-wire arithmetic mode with import-export evaluation for individual phases or 3-wire 2-system connection are chosen the password DCBA has to be entered to allow the modification. In 2W3 connection the phase measurements are blocked on LCD while in 3W3 connection they are not automaticly blocked. It is recommended to remove phase voltage and power measurements at Displayed measurement setting as these are not relevant at 3-wire connection.

3.2.4 Error display on LCD

If error is detected Error display appears on LCD after each cycle for 5 seconds. The first two bits are the summary description of CRC errors. The decimal value of first 3 Bits (0 ...7) is displayed as Error.

The other bits are shown with 2 values:

- Data CRC shows Parameter CRC details decimal value (0...3f) of bits 8 to 13.
- Code CRC shows Firmware CRC details decimal value (0 ...1f) of bits 3 to 7.

3.3 Calibration and setting parameters

Calibration parameters can only be changed in production. They cannot be changed by upgrade or different processes. Special factory software is used to calibrate the parameters for current, voltage, and phase angle. If these parameters were tenaciously or accidentally changed, an error type 1 is detected and Error 1 is shown on the LCD. Calibration parameters are checked every 64 seconds. The parameters related to energy measurement can only be changed if the MID key is unlocked.

3.4 Freeze counters

3.4.1 Meaning

Since 3MEM80 energy meter does not support internaly synchronised real-time clock (RTC) for the purpose of simultaneous capture of measurements, the freeze function is implemented. Use is enabled only when the meter is on.

Freeze function enables using 3MEM80 smart meters for billing or sub-billing purposes and to compare sub-metering data with main energy meter. Reading several hundred serially connected counters can last more than 10 minutes. That is why 3MEM80 supports command Freeze counters. Its purpose is to freeze data simultaneously on all devices in the network.

The freeze function operation is also performed in case of device power supply failure or device reset.

3.4.2 Set up

To perform the freeze function, the energy meters should be connected to the serial communication RS485 and belonging software which use Modbus registers.

The energy meter 3MEM80 enables several ways to activate freeze function:

- Freeze status register,
- time to freeze register,
- auto freeze interval register.

3.4.3 Time to freeze register (41902)

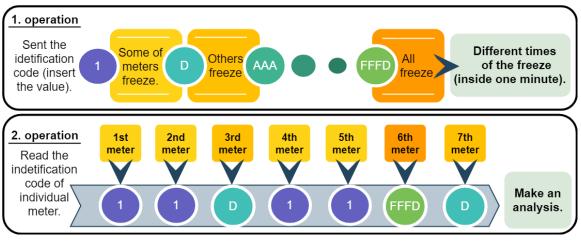
The purpose of the time to freeze register is to freeze all energy meters simultaneously. Set the number of time to freeze register (41902), the value of appropriate time (in seconds) before the time of the freeze and time of the freeze. After an expired time, the freeze command is executed automatically. Due to unreliability in communication, it is recommended that the desired time is sent more than ones, to ensure that freeze is simultaneous on all instruments. The desired time need to be sent in the interval of one minute.

For example, if you want that freeze function is executed at 10 am, run the command seven times, starting 7 s before 10 am and repeat it with a one second interval (see the picture below).

All instruments that received one of the commands will freeze at the same time. This is the advantage of the described register, so it is recommended to use it.

It is also possible to individually enter the appropriate time in register 41902 of each instrument.

3.4.4 Auto freeze interval register (41901)


The purpose of the auto freeze interval register is to freeze energy meters in the same time interval, for example, every day. Set the certain auto freeze interval (in minutes). Maximum allowed value is 65535 minutes. Periodic synchronization is activated automatically after the entered interval. If the interval is set to 0, the auto freeze interval function is turned off.

The disadvantage of this register is that the time is not appropriate if the meters reset or in case of another failure.

3.4.5 Status register of freeze (41905)

The purpose of the status register is to test the reliability of RS485 communication. Enter the broadcast command of different identification codes between 1 to FFFD in the freeze status register (41905). Repeatedly send a different identification code to the freeze status register (41905) in order to increase the reliability of receiving commands. The reliability of reading different numbers of identification code enables analysis of communication reliability. In the case of 100% reliability of communication, all instruments have the value of the first sent identification code, when reading the status register. After the instrument receives the identification code, it ignores all entries in the status register in the interval of one minute. Send as many different identification codes in a short time interval. For example, send the different identification codes ten times within one second. Use numbers from 1 to FFFD (1 -

65533). For example, first use value 1, then D, AAA and at the end FFFD (see picture below). Please note that you never know if all the meters will freeze, so send as many commands as possible within one minute.

PLEASE NOTE

Please do not use the values 0000, FFFF or FFFE. The 0000 is reserved to start the meter when connected to the power supply. Freeze function is performed. The FFFF is reserved to trigger freezing function automatically (same as time to freeze register 41902). The FFFE is reserved for the auto interval freeze.

Send the command for reading the register, so you can see which identification code has been accepted by the individual instrument. The server calculates time from a freeze of the device.

3.4.6 Access and interpretation of data

After the execution of the freeze command, the counters are stored into registers 41906 to 41938, which can be read by the master. Register 41906 displays frozen tariff counter and registers 41907 to 41938 display frozen energy counters (1 - 16). The data we read on all devices can this way be compared. Encoded information should be read with Modbus table (see Appendix A).

In addition, the time since the last freeze can be checked with time from freeze register (41903, 41904). The purpose of these register is to control if displayed measurements are relevant. The register contains time (in seconds) from the last freeze counters execution.

3.5 NFC settings

NFC allows the reading of the energy registers and different meter parameters. The advantage of NFC implemented functionality on ETI d.o.o./electricity meters is that in the event of a power down, it remembers all the last measured values, which can be read via NFC.

NFC reading is possible with every type that has the following label NFC.

Figure 42: NFC use

PLEASE NOTE

Mobile application for NFC communication is not available.

4 MEASUREMENT

The 3MEM80 is bidirectional energy meter measures voltage and current. From which it is able to calculate different quantities, energy (imported and exported), voltage, current, power, frequency, etc.. The 3MEM80 energy meter performs measurements with a sampling frequency equal to 3906,25 Hz.

4.1	SELECTION OF AVAILABLE QUANTITIES	31
4.2	CALCULATION AND DISPLAY OF MEASUREMENTS	31
4.2.1	Voltage	32
4.2.2	CURRENT	32
4.2.3	ACTIVE, REACTIVE AND APPARENT POWER	32
4.2.4	POWER FACTOR AND POWER ANGLE	33
4.2.5	FREQUENCY	33
4.2.6	ENERGY COUNTERS	33
4.2.7	HARMONIC DISTORTION	33

4.1 Selection of available quantities

Microprocesor calculates the TRMS voltage, TRMS current, active, reactive and apparent power, U-I phase angle, first harmonic of voltage, first harmonic of current, peak to peak voltage, THD of voltage and THD of current. Complete selection of available online measuring quantities is shown in a table below.

Meas. type	Measurement	3-phase	comments
Phase	Voltage		
measurements	U _{1-3_TRMS}	$\overline{\checkmark}$	
	UTOT_TRMS	\checkmark	
	Current		
	I _{1-3_TRMS}	\checkmark	
	I _{TOT_TRMS}	\checkmark	
	Power		
	P _{1-3_TRMS}	\checkmark	
	P _{TOT_TRMS}	\checkmark	
	Q1-3_TRMS		
	QTOT_TRMS	\checkmark	
	S1-3_TRMS	$\overline{\mathbf{V}}$	
	Stot_trms	\checkmark	
	PF _{1-3_TRMS}	\checkmark	
	PFTOT	\checkmark	
	Φ1-3_TRMS	\checkmark	
	Фтот_ткмs	\checkmark	
	Harmonic analysis		
	THD-U ₁₋₃	$\overline{\mathbf{V}}$	
	THD-I ₁₋₃	$\overline{\checkmark}$	
Phase to phase	Voltage		
measurements	Upp _{1-3_TRMS}		
	Upp _{TOT_TRMS}		
	Фх-у_ткмз	$\overline{\checkmark}$	Phase-to-phase angle
Metering	Energy		
	Counter E ₁₋₄	$\overline{\checkmark}$	Each counter can be dedicated to any of four quadrants (P-Q, import-export, L-
	Counter C ₁₋₁₆	\checkmark	C). Total energy is a sum of one counter for all tariffs. Tariffs can be fixed, tariff
	Active tariff	\checkmark	input dependent
Inputs and Outputs	Value	\checkmark	
Other	Miscellaneous		
measurements	Frequency		
	Date		
	Time		
	Internal temperatur	e	
	Run time		

Given Further description is available in following subchapters **Table 9:** Selection of available measurement quantities

4.2 Calculation and display of measurements

This chapter deals with capacitiveture, calculation and display of all supported measurement quantities. For more information about display presentation see chapter 3.2 LCD User Interface. Only the most important equations are described; however, all of them are shown in a chapter APPENDIX C: EQUATIONS with additional descriptions and explanations.

4.2.1 Voltage

Voltage related measurements are listed below:

- Real effective (TRMS) value of all phase voltages (U₁, U₂, U₃) and phase-to-phase voltages (U₁₂, U₂₃, U₃₁).
- Phase and phase-to-phase voltage angles ($\varphi_{12}, \varphi_{23}, \varphi_{31}$)

$$U_{f} = \sqrt{\frac{\sum_{n=1}^{N} u_{n}^{2}}{N}}$$
$$U_{xy} = \sqrt{\frac{\sum_{n=1}^{N} (u_{xn} - u_{yn})^{2}}{N}}$$

All voltage measurements are available through communication as well as on standard or customized displays.

4.2.2 Current

3MEM80 energy meter measures:

• real effective (TRMS) value of phase currents

$$I_{TRMS} = \sqrt{\frac{\sum_{n=1}^{N} i_n^2}{N}}$$

All current measurements are available on communication as well as standard and customized displays on LCD.

4.2.3 Active, reactive and apparent power

Active power is calculated from instantaneous phase voltages and currents. All measurements are seen on communication or are displayed on LCD. For more detailed information about calculation see chapter APPENDIX C: EQUATIONS.

4.2.4 Power factor and power angle

PF or distortion power factor is calculated as the quotient of active and apparent power for each phase separately and total power angle. It is called distortion power factor since true (distorted) signals are using in equation (all equations are presented in chapter APPENDIX C: EQUATIONS). A symbol for a coil (positive sign) represents inductive load and a symbol for a capacitiveacitor (negative sign) represents capacitive load.

4.2.5 Frequency

Network frequency is calculated from time periods of measured voltage. Instrument uses synchronization method, which is highly immune to harmonic disturbances.

4.2.6 Energy counters

The 16 programmable energy counters could be set.

4.2.7 Harmonic distortion

3MEM80 energy meter calculates THD for phase currents and phase voltages and is expressed as percent of high harmonic components regarding to fundamental harmonic.

5 TECHNICAL DATA

In following chapter all technical data regarding operation of a three-phase electrical energy meter is presented.

5.1	Accuracy	35
5.2	MECHANICAL CHARACTERISTICS OF INPUT	35
5.3	ELECTRICAL CHARACTERISTICS OF INPUT	36
5.4	SAFETY AND AMBIENT CONDITIONS	37
5.5	EU DIRECTIVES CONFORMITY	38
5.5	MID CERTIFIED METERS	38
5.6	DIMENSIONS	38

5.1 Accuracy

Measured values	Accuracy class			
Active energy:	class 1 EN 62053-21			
	class B EN 50470-3			
	\pm 1.5% from I_{min} to I_{tr}			
	\pm 1% from I_{tr} to I_{max}			
Reactive energy:	class 2 EN 62053-23			
	$\pm 2.5\%$ from I_{min} to I_{tr}	$\pm 2.5\%$ from I_{min} to I_{tr}		
	$\pm 2\%$ from I_{tr} to I_{max}			
Voltage:	±1% of measured value			
Current:	$\pm 1\%$ of I_{ref} from I_{st} to I_{ref}			
	\pm 1% of measured value from I_{ref} to I_{max}	\pm 1% of measured value from I_{ref} to I_{max}		
Active Power:	\pm 1% of nominal power ($U_n * I_{ref}$) from I_{st} to I_{ref}			
	\pm 1% of measured value from I_{ref} to I_{max}			
Reactive, Apparent power:	$\pm 2\%$ of nominal power from I_{st} to I_{ref}			
	$\pm 2\%$ of measured value from I_{ref} to I_{max}	±2% of measured value from I_{ref} to I_{max}		
Frequency:	±0.5% of measured value			

5.2 Mechanical characteristics of input

Rail mounting according DIN EN 60715. In case of using the stranded wire, the ferrule must be attached before the mounting.

Terminals		Max. conductor cross-sections	
Main inputs	Contacts capacitiveacity:	$1.5 \ mm^2 \ \ 25 \ (16) \ mm^2$	
	Connection screws:	M5	
	Max torque:	3.5 Nm (PH2)	
	Length of removed isolation:	10 mm	
Optional modules	Contacts capacitiveacity:	0.5 mm ² 1.5 mm ²	
	Connection screws:	МЗ	
	Max torque:	0.6 Nm	
	Length or removed isolation:	8 mm	

5.3 Electrical characteristics of input

Inputs and outputs			
Measuring input	Type (connection):	three-phase (4u and 3u)	
5 1		single-phase (1b)	
	Reference current (I _{ref})	5 A	
	Maximum current (I _{max}):	80 A	
	Minimum current (I _{min}):	0.25 A	
	Transitional current (I _{tr}):	0.5 A	
	Starting current:	20 mA	
	Power consumption at I_{ref}	0.1 VA	
	Nominal voltage (U_n) :	3x230 V/400 V (-20 %+15 %)	
	Power consumption per phase at U_n :	< 8 VA	
	Nominal frequency (f_n) :	50 Hz and 60 Hz	
	Minimum measuring time:	10 s	
Pulse output SO1	Pulse rate:	500 imp/kWh	
	Pulse duration:	32 ms ± 2 ms	
	Rated voltage DC (max):	27 V	
	Switched current (max):	27 mA	
	Standard:	EN 62053-31 (A&B)	
Pulse output S02 (option)	Туре:	Programmable	
	Rated voltage DC (max):	27 V	
	Switched current (max):	27 mA	
RS485 Serial communication (option)	Туре:	RS485	
	Speed:	1200 bit/s to 115200 bit/s (default 115200	
		bit/s)	
	Frame:	8, N, 2	
	Protocol:	MODBUS RTU	
	Address:	33 – (default)	
Optical IR communication	Туре:	IR	
	Connection:	via USB adapter	
	Speed:	19200 bit/s	
	Frame:	8, N, 2	
	Protocol:	MODBUS RTU	
	Address:	33	
	Remark:	All settings are fixed	
NFC	Protocol:	ISO/IEC 14443 Part 2 and 3 compliant	
	Frequency range:	13.56 Mhz	
	Baudrate:	106 kbps	
	Operating distance:	up to 15 mm from LCD	
		(distance depends on used reader)	
Tariff input	Rated voltage:	230 V (+15 %- 20 %)	
	Input resistance:	360 kOhm	
	Maximum load current:	50 mA	

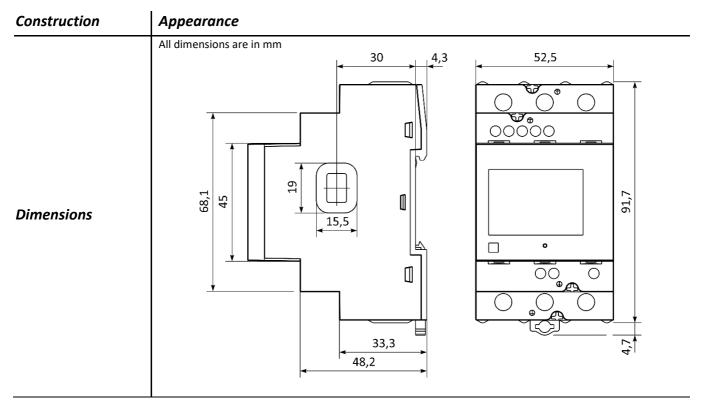
5.4 Safety and ambient conditions

According to standards for indoor active energy meters.

Temperature and climatic condition according to EN 62052-11.

Dust/water protection:	IP50 (For IP51 it should be installed in appropriate cabinet.)
Operating temperature:	-25 °C - +70 °C (non-condensig humudity)
Storage temperature:	-40 °C - + 85°C
Enclosure:	self extinguish, complying UL94-V
Indoor meter:	Yes
Degree of pollution:	2
Protection class:	11
Installation category	300 Vrms cat.III
Standard:	IEC 62052-31
Mechanical environment:	M1
Electromagnetic environment:	E2
Humidity:	non condensing
Max weight (with packaging):	225 g (258.5 g)
Installation:	DIN Rail 35 mm
Dimensions (W x H x D):	52.5 mm x 91.7 mm x 68.2 mm
Package dimensions (W x H x D):	74 mm x 106 mm x 80 mm
Colour:	RAL 7035

5.5 EU directives conformity


MID certified meters

MID approval applies to non-resettable active energy counters.

- EU Directive on Measuring Instruments 2014/32/EU
- EU Directive on EMC 2014/30/EU
- EU Directive on Low Voltage 2014/35/EU
- EU Directive WEEE 2002/96/EC
- EU RED Directive 2014/53/EU

5.6 Dimensions

Dimensional drawing

9 ABBREVIATION/GLOSSARY

Abbreviations are explained within the text where they appear the first time. Most common abbreviations and expressions are explained in the following table:

Term	Explanation		
MODBUS	Industrial protocol for data transmission		
Ethernet	IEEE 802.3 data layer protocol		
AC	Alternating quantity		
PI	Pulse input module		
IR	Infrared (optical) communication		
RMS	Root Mean Square		
TRMS	True Root Mean Square		
РО	Pulse output		
ΡΑ	Power angle (between current and voltage)		
PF	Power factor		
THD	Total harmonic distortion		
RTC	Real-time clock		
NFC	Near Field Communication		
NC	Not connected		
SC	Shield		
SW	Software		
MID	Measuring Instruments Directive		

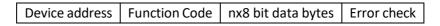
Table 10: List of common abbreviations and expressions

10APPENDICES

10.1 Appendix A: MODBUS communication protocol

Modbus protocol enables operation of device on Modbus networks. For 3MEM80\ with serial communication the Modbus protocol enables multi drop communication via RS485 communication. Modbus protocol is a widely supported open interconnect originally designed by Modicon. The memory reference for input and holding registers is 30000 and 40000 respectively.

PLEASE NOTE


The Modbus table is subject to change without notice. For the latest and complete Modbus table please visit ETI web page.

Communication operates on a master-slave basis where only one device (the master) can initiate transactions called 'Requests'. The other devices (slaves) respond by supplying the requested data to the master. This is called the 'Request - Response Cycle'.

The master could send the MODBUS request to the slaves in two modes:

- Unicast mode, where the master sends the request to an individual slave. It returns a replay
 to the master after the request is received and processed. A MODBUS transaction consists of
 two messages. Each slave should have an unique address.
- Broadcast mode, where the master sends a request to all slaves and an answer is never followed. All devices should accept the broadcast request function. The Modbus address 0 is reserved to identify the broadcast request.

Master to Slave Request

Slave to Master Response

Device address	Function Code	nx8 bit data bytes	Error check
----------------	---------------	--------------------	-------------

Request

This Master to Slave transaction takes the form:

- Device address: master addressing a slave (Address 0 is used for the broadcast address, which all slave devices recognize.)
- Function code e.g. 03 asks the slave to read its registers and respond with their contents.
- Data bytes: tells the slave which register to start at and how many registers to read.

Response

This Slave to Master transaction takes the form:

- Device address: to let the master know which slave is responding.
- Function code: this is an echo of the request function code.
- Data bytes: contains the data collected from the slave.

Request Frame

		Starting Register	Register Count	CRC
Slave Address	Function Code	HI LO	HI LO	lo hi
21	04	00 6B	00 02	

Response Frame

			Register Data	CRC
Slave Address	Function Code	Byte Count	HI LO HI LO	lo hi
21	04	04	FE 00 59 96	

Request- response cycle example

Address number of slave: 21

Function code: $04 \rightarrow 30000$

Starting register HI...LO: $00...6B_{(16)} \rightarrow 107_{(10)} + 30000_{(10)} = 30107_{(10)}$ (Meaning that actual measurement is U1. For further informations *see REGISTER TABLE FOR THE ACTUAL MEASUREMENTS*.) Register count HI...LO: $00...02_{(16)} \rightarrow 2_{(10)}$ (Two registers: 30107 and 30108) Data type: T5 (Unsigned Measurement (32 bit) – *see table of DATA types decoding*) Register data: FE 00 59 74_{(16)} $\rightarrow 22934 * 10^{-2} \lor = 229,34 \lor$

REGISTER TABLE FOR THE ACTUAL MEASUREMENTS

The tables below represent the complete set of MODBUS register map. Register refresh frequency for actual measurement from register 30105 to register 30190 is one second. Register refresh frequency for energy counters (from 30406 to 30441) is 40 ms. The registers from 30426 to 30441 (1000 x Energy Counter from 30406 to 30413 and from 30418 to 30425) represent the same energy counters at 1000-times higher resolution. This registers cam be read to calculate the energy difference in the time interval more accurate.

ACTUAL MEASUREMENTS

		Contents	Data	Ind	Values / Dependencies
Add	lress	Input Registers			
		READ ONLY INFO			
30000		Memory Reference			
		READ ONLY INFO			
30001	30008	Model Number	T_Str16		
30009	30012	Serial Number	T_Str8		
30013		Software Reference	T1		Software version
30014		Hardware Reference	T_Str2		Hardware version
30015		Calibration voltage	T16		V/100
30017		Calibration current	T16		A/100
30019		Accuracy class	T17		100=1,00
30020		MiNet Flag	T1	0	
30024		COM1: Communication Type	T1	0	No Communication
				2	RS485
				13	M-bus
				15	WiFi
30028		Memory type	T1	0	No memory
				3	8 MB Flash
				4	16 MB Flash
30029		I/O 1	T1	0	No I/O
				5	Tariff Input
				10	Digital input
				12	Pulse Output (SO)
30030		I/O 2	T1		See I/O 1
30031		I/O 3	T1		See I/O 1
30032		I/O 4	T1		See I/O 1
30044		Status register	T1	Bit-0	Locked
				Bit-1	Wrong connection
				Bit-2	Low battery
				Bit-3	Low supply
				Bit-4	Clock not set
30055	30057	Ethernet MAC Address	T_Hex6		
30058		Ethernet Software Reference	T1		Ethernet Software version
30059	30060	Ethernet: IP Address	T_Hex4		Actual Ethernet IP Address
30061		phase module 1 Software reference	T17		100=1,0
30062		phase module 2 Software reference	T17		100=1,0
30063		phase module 3 Software reference	T17		100=1,0
30064		phase module 1 CheckSum	T1		
30065		phase module 2 CheckSum	T1		
30066		phase module 3 CheckSum	T1		
30067		phase m. 1 Calibration Data CheckSum	T1		
30068		phase m. 2 Calibration Data CheckSum	T1		
30069		phase m. 3 Calibration Data CheckSum Measurement module Software ref.	T1		100-1.0
30070		Measurement module Software ref.	T17 T1		100=1,0
30071					
30072		Meas. m. Calibration Data CheckSum	T1		

٨d	dress	Contents	Data	Ind	Values / Dependencies
71001055		Input Registers			
30073		MID Setting Data CheckSum	T1		
30074		Setting Data CheckSum	T1		
30075		Software Checksum	T1		
30076		MID lock status	T1	0	unlocked
				1	locked
30077	30078	Calibration Time Stamp	T_unix		
30079		MID unlock counter	T1		
30080		FW upgrade counter	T1		
30081		Software Checksum HI	T1		
30082		Measurement module CheckSum HI	T1		
30083		phase module 1 CheckSum HI	T1		
30084		phase module 2 CheckSum HI	T1		
30085		phase module 3 CheckSum HI	T1		
30097		Software options	T1		
30098		Active Communication Port	T1	1	COM1
30099		Modbus Max. Register Read at Once	T1		
39000		Device group	T1	5	ІМРАСТ

Address		Contents	Data	Ind	Values / Dependencies
Add	iress	Input Registers			
		ACTUAL MEASUREMENTS			
30101		Phase valid measurement	T1	Bit 0	Invalid measurement phase 1
				Bit 1	Invalid measurement phase 2
				Bit 2	Invalid measurement phase 3
30102		reserved			
30103	30104	Run time	Т3		seconds
30105	30106	Frequency	T5		
30107	30108	U1	T5		
30109	30110	U2	T5		
30111	30112	U3	T5		
30113	30114	Uavg (phase to neutral)	T5		
30115		j12 (angle between U1 and U2)	T17		
30116		j23 (angle between U2 and U3)	T17		
30117		j31 (angle between U3 and U1)	T17		
30118	30119	U12	T5		
30120	30121	U23	T5		
30122	30123	U31	T5		
30124	30125	Uavg (phase to phase)	T5		
30126	30127	11	T5		
30128	30129	12	T5		
30130	30131	13	T5		
30132	30133	INc	T5		
30134	30135	Inm - reserved	T5		
30136	30137	lavg	T5		
30138	30139	SI	T5		
30140	30141	Active Power Total (Pt)	Т6		
30142	30143	Active Power Phase L1 (P1)	Т6		
30144	30145	Active Power Phase L2 (P2)	Т6		
30146	30147	Active Power Phase L3 (P3)	Т6		
30148	30149	Reactive Power Total (Qt)	Т6		
30150	30151	Reactive Power Phase L1 (Q1)	Т6		
30152	30153	Reactive Power Phase L2 (Q2)	Т6		
30154	30155	Reactive Power Phase L3 (Q3)	Т6		
30156	30157	Apparent Power Total (St)	T5		
30158	30159	Apparent Power Phase L1 (S1)	T5	30158	30159
30160	30161	Apparent Power Phase L2 (S2)	T5	30160	30161
30162	30163	Apparent Power Phase L3 (S3)	T5	30162	30163
30164	30165	Power Factor Total (PFt)	Τ7	30164	30165
30166	30167	Power Factor Phase 1 (PF1)	Τ7	30166	30167
30168	30169	Power Factor Phase 2 (PF2)	Τ7	30168	30169
30170	30171	Power Factor Phase 3 (PF3)	T7	30170	30171

30174		angle between U2 and I2	T17		
30175		angle between U3 and I3	T17		
30181		Internal Temperature	T17		
		THD HARMONIC DATA			
30182		U1 THD%	T16		
30183		U2 THD%	T16		
30184		U3 THD%	T16		
30188		I1 THD%	T16		
30189		I2 THD%	T16		
30190		I3 THD%	T16		
		I/O STATUS			
30191		Alarm Status Flags(G1, G2	T1	Bit 04	Group 1 Limit 1 4
				Bit	Group 2 Limit 1 4
				812	
30192		Alarm Status Flags(G3, G4	T1	Bit 04	Group 3 Limit 1 4
30193		I/O 1 Value	T17		
30194		I/O 2 Value	T17		
30195		I/O 3 Value	T17		
30196		I/O 4 Value	T17		
30197		External relay status	T1	0	Off
				1	On
				250	Comm. Error
				255	Not connected
30198		Reserved for Load control output	T1	0	Off
		status			
				1	On
30199		Reserved for Digital input status	T1	0	Off
				1	On
30200		Alarm Status Flags(GE	T1	Bit 04	Group E Limit 1 4
30201		Logic functions values	T1	Bit 0	Logic function 1
				Bit 1	Logic function 2
				Bit 2	Logic function 3
30202	30395	Reserved			
30396	30399	Actual time	T_Time		

Address		Contents	Data	Ind	Values / Dependencies
Add	iress	Input Registers			
		ENERGY			
30400		CheckSum Status	T1	0	No Error (OK)
				Bit O	Error Parameter CRC
				Bit 1	Error Firmware CRC
				Bit 2	Error MID-lock
				Bit 3	Error phase module 1 CheckSum
				Bit 4	Error phase module 2 CheckSum
				Bit 5	Error phase module 3 CheckSum
				Bit 6	Error Measurement module CheckSum
				Bit 7	Error Software Checksum
				Bit 8	Error Calibration Data CheckSum
				Bit 9	Error MID Setting Data CheckSum
				Bit 10	Error Setting Data CheckSum
				Bit 11	Error phase m. 1 Cal. Data CheckSum
				Bit 12	Error phase m. 2 Cal. Data CheckSum
				Bit 13	Error phase m. 3 Cal. Data CheckSum
				Bit 15	Instalation not set
30401		Energy Counter n1 Exponent	T2		
30402		Energy Counter n2 Exponent	T2		
30403		Energy Counter n3 Exponent	T2		
30404		Energy Counter n4 Exponent	T2		
30405		Current Active Tariff	T1		
30406	30407	Energy Counter n1	Т3		
30408	30409	Energy Counter n2	Т3		
30410	30411	Energy Counter n3	Т3		
30412	30413	Energy Counter n4	Т3		
30414	30415	Energy Counter 1	Т3		
30416	30417	Energy Counter 2	Т3		
30418	30419	Energy Counter 3	Т3		
30420	30421	Energy Counter 4	Т3		
30422	30423	Energy Counter 5	Т3		
30424	30425	Energy Counter 6	Т3		
30426	30427	Energy Counter 7	Т3		
30428	30429	Energy Counter 8	Т3		
30430	30431	Energy Counter 9	Т3		
30432	30433	Energy Counter 10	Т3		
30434	30435	Energy Counter 11	Т3		
30436	30437	Energy Counter 12	Т3		
30438	30439	Energy Counter 13	Т3		
30440	30441	Energy Counter 14	Т3		
30442	30443	Energy Counter 15	Т3		
30444	30445	Energy Counter 16	Т3		

Address		Contents	Data	Ind	Values
		ENERGY			
30446		Energy Counter 1 Exponent	T2		
30447		Energy Counter 2 Exponent	T2		
30448		Energy Counter 3 Exponent	T2		
30449		Energy Counter 4 Exponent	T2		
30450		Energy Counter 5 Exponent	T2		
30451		Energy Counter 6 Exponent	T2		
30452		Energy Counter 7 Exponent	T2		
30453		Energy Counter 8 Exponent	T2		
30454		Energy Counter 9 Exponent	T2		
30455		Energy Counter 10 Exponent	T2		
30456		Energy Counter 11 Exponent	T2		
30457		Energy Counter 12 Exponent	T2		
30458		Energy Counter 13 Exponent	T2		
30459		Energy Counter 14 Exponent	T2		
30460		Energy Counter 15 Exponent	T2		
30461		Energy Counter 16 Exponent	T2		
30462	30463	1000 x Energy Counter n1	Т3		
30464	30465	1000 x Energy Counter n2	Т3		
30466	30467	1000 x Energy Counter n3	Т3		
30468	30469	1000 x Energy Counter n4	Т3		
30470	30471	1000 x Energy Counter 1	Т3		
30472	30473	1000 x Energy Counter 2	Т3		
30474	30475	1000 x Energy Counter 3	Т3		
30476	30477	1000 x Energy Counter 4	Т3		
30478	30479	1000 x Energy Counter 5	Т3		
30480	30481	1000 x Energy Counter 6	Т3		
30482	30483	1000 x Energy Counter 7	Т3		
30484	30485	1000 x Energy Counter 8	Т3		
30486	30487	1000 x Energy Counter 9	Т3		
30488	30489	1000 x Energy Counter 10	Т3		
30490	30491	1000 x Energy Counter 11	Т3		
30492	30493	1000 x Energy Counter 12	Т3		
30494	30495	1000 x Energy Counter 13	Т3		
30496	30497	1000 x Energy Counter 14	Т3		
30498	30499	1000 x Energy Counter 15	Т3		
30500	30501	1000 x Energy Counter 16	Т3		

Address		Contents	Data	Ind	Values
		ENERGY			
32480	32481	Run time	T_float		seconds
32482	32483	Reserved for Frequency (fast response)	 T_float		
32484	32485	Uavg (phase to neutral)	 T_float		
32486	32487	Uavg (phase to phase)	 T_float		
32488	32489	S1	T_float		
32490	32491	Active Power Total (Pt)	T_float		
32492	32493	Reactive Power Total (Qt)	T_float		
32494	32495	Apparent Power Total (St)	T_float		
32496	32497	Power Factor Total (PFt)	T_float		
32498	32499	Frequency	T_float		
32500	32501	U1	T_float		
32502	32503	U2	T_float		
32504	32505	U3	T_float		
32506	32507	Uavg (phase to neutral)	T_float		
32508	32509	U12	T_float		
32510	32511	U23	T_float		
32512	32513	U31	T_float		
32514	32515	Uavg (phase to phase)	T_float		
32516	32517	11	T_float		
32518	32519	12	T_float		
32520	32521	13	T_float		
32522	32523	S I	T_float		
32524	32525	I neutral (calculated)	T_float		
32526	32527	I neutral (measured)	T_float		
32528	32529	lavg	T_float		
32530	32531	Active Power Phase L1 (P1)	T_float		
32532	32533	Active Power Phase L2 (P2)	T_float		
32534	32535	Active Power Phase L3 (P3)	T_float		
32536	32537	Active Power Total (Pt)	T_float		
32538	32539	Reactive Power Phase L1 (Q1)	T_float		
32540	32541	Reactive Power Phase L2 (Q2)	T_float		
32542	32543	Reactive Power Phase L3 (Q3)	T_float		
32544	32545	Reactive Power Total (Qt)	T_float		
32546	32547	Apparent Power Phase L1 (S1)	T_float		
32548	32549	Apparent Power Phase L2 (S2)	T_float		
32550	32551	Apparent Power Phase L3 (S3)	T_float		
32552	32553	Apparent Power Total (St)	T_float		
32554	32555	Power Factor Phase 1 (PF1)	T_float		
32556	32557	Power Factor Phase 2 (PF2)	T_float		
32558	32559	Power Factor Phase 3 (PF3)	T_float		
32560	32561	Power Factor Total (PFt)	T_float		
32562	32563	CAP/IND P. F. Phase 1 (PF1)	T_float		
32564	32565	CAP/IND P. F. Phase 2 (PF2)	T_float		
32566	32567	CAP/IND P. F. Phase 3 (PF3)	T_float		
32568	32569	CAP/IND P. F. Total (PFt)	T_float		

2.000		REMENTS		
34999	35000	Run time	T3	seconds
32995	32996	nominal frequency	T_float	Fnom
32993	32992	nominal total current	T_float	ltot
32989	32990	nominal total power	T_float	Ptot
32987	32988	nominal phase power	T_float	Pnom
32985 32987	32986 32988	nominal phase voltage nominal phase current	T_float T_float	Unom Inom
32985	22006		T floot	linom
32790	32791	Energy Counter 16 NOMINAL VALUES	T_float	
32788	32789	Energy Counter 15	T_float	
32786	32787	Energy Counter 14	T_float	
32784	32785	Energy Counter 13	T_float	
32782	32783	Energy Counter 12	T_float	
32780	32781	Energy Counter 11	T_float	
32778	32779	Energy Counter 10	T_float	
32776	32777	Energy Counter 9	T_float	
32774	32775	Energy Counter 8	T_float	
32772	32773	Energy Counter 7	T_float	
32770	32771	Energy Counter 6	T_float	
32768	32769	Energy Counter 5	T_float	
32766	32767	Energy Counter 4	T_float	
32764	32765	Energy Counter 3	T_float	
32762	32763	Energy Counter 2	T_float	
32760	32761	Energy Counter 1	T_float	
32758	32759	Energy Counter n4	 T_float	
32756	32757	Energy Counter n3	 T_float	
32754	32755	Energy Counter n2	 T_float	
32752	32753	Energy Counter n1	 T_float	
32750	32751	Aktiv Tariff	T_float	
		ENERGY		
32658	32659	Internal Temperature	T_float	
32644	32645	Energy Counter n4	T_float	
32642	32643	Energy Counter n3	T_float	
32640	32633	Energy Counter n2	T_float	
32592	32593	Energy Counter n1	T_float	
32590 32592	32591 32593	I2 THD%	T_float T_float	
32588	32589	I1 THD%	T_float	
32586	32587	Reserved	T (!+	
32584	32585	Frequency	T_float	
32582	32583	j31 (angle between U3 and U1)	T_float	
32580	32581	j23 (angle between U2 and U3)	T_float	
32578	32579	j12 (angle between U1 and U2)	T_float	
32576	32577	Power Angle Total (atan2(Pt,Qt))	T_float	
32574	32575	j3 (angle between U3 and I3)	T_float	
32572	32573	j2 (angle between U2 and I2)	T_float	
32570	32571	j1 (angle between U1 and I1)	T_float	

INTERVAL MEASUREMENTS

Interval measurements are intended for data collection and synchronization of the time for data reading, trough the communication. The time interval of data reading is programmable, by default is one minute. The minimum and maximum measurements could be read within a given time interval.

٨ ٩٩	-	Contents	Data	Ind	Values / Dependencies
Address		Input Registers			
		AVERAGE MEASUREMENTS			
35500		The last Average interval duration	T1		Seconds/10
35501		Time since the last average meaurements	T1		Seconds/10
35502		Average measurements counter	T1		
35503	35504	Timestamp (Run time)	T_unix		'= 0 after reset
35505	35506	Frequency	T5		
35507	35508	U1	T5		
35509	35510	U2	T5		
35511	35512	U3	T5		
35513	35514	Uavg (phase to neutral)	T5		
35515		j12 (angle between U1 and U2)	T17		
35516		j23 (angle between U2 and U3)	T17		
35517		j31 (angle between U3 and U1)	T17		
35518	35519	U12	T5		
35520	35521	U23	T5		
35522	35523	U31	T5		
35524	35525	Uavg (phase to phase)	T5		
35526	35527	11	T5		
35528	35529	12	T5		
35530	35531	13	T5	35530	35531
35536	35537	lavg	T5		
35538	35539	S I	T5		
35540	35541	Active Power Total (Pt)	Т6		
35542	35543	Active Power Phase L1 (P1)	Т6		
35544	35545	Active Power Phase L2 (P2)	Т6		
35546	35547	Active Power Phase L3 (P3)	Т6		
35548	35549	Reactive Power Total (Qt)	Т6		
35550	35551	Reactive Power Phase L1 (Q1)	Т6		
35552	35553	Reactive Power Phase L2 (Q2)	Т6		
35554	35555	Reactive Power Phase L3 (Q3)	Т6		
35556	35557	Apparent Power Total (St)	T5		
35558	35559	Apparent Power Phase L1 (S1)	T5		
35560	35561	Apparent Power Phase L2 (S2)	T5		
35562	35563	Apparent Power Phase L3 (S3)	T5		
35564	35565	Power Factor Total (PFt)	T7		
35566	35567	Power Factor Phase 1 (PF1)	T7		
35568	35569	Power Factor Phase 2 (PF2)	T7		
35570	35571	Power Factor Phase 3 (PF3)	T7		
35572		Power Angle Total (atan2(Pt,Qt))	T17		
35573		j1 (angle between U1 and I1)	T17		
35574		j2 (angle between U2 and I2)	T17		
35575		j3 (angle between U3 and I3)	T17		
۸dd		Contonto	Data	Ind	Values / Dependencies

Address Contents	Data	Ind	Values / Dependencies
------------------	------	-----	-----------------------

		Input Registers		
		AVERAGE MEASUREMENTS		
		THD HARMONIC DATA		
35582		U1 THD%	T16	
35583		U2 THD%	T16	
35584		U3 THD%	T16	
35588		11 THD%	T16	
35589		12 THD%	T16	
35590		I3 THD%	T16	
35605	35606	Frequency	Т5	
35607	35608	U1	T5	
35609	35610	U2	T5	
35611	35612	U3	T5	
35613	35614	Uavg (phase to neutral)	T5	
35615		j12 (angle between U1 and U2)	T17	
35616		j23 (angle between U2 and U3)	T17	
35617		j31 (angle between U3 and U1)	T17	
35618	35619	U12	T5	
35620	35621	U23	T5	
35622	35623	U31	T5	
35624	35625	Uavg (phase to phase)	T5	
35626	35627	11	T5	
35628	35629	12	T5	
35630	35631	13	T5	
35632	35633	Reserved: Inc	T5	
35634	35635	Reserved: Inm	T5	
35636	35637	lavg	T5	
35638	35639	S1	T5	
35640	35641	Active Power Total (Pt)	Т6	
35642	35643	Active Power Phase L1 (P1)	Т6	
35644	35645	Active Power Phase L2 (P2)	Т6	
35646	35647	Active Power Phase L3 (P3)	Т6	
35648	35649	Reactive Power Total (Qt)	Т6	
35650	35651	Reactive Power Phase L1 (Q1)	Т6	
35652	35653	Reactive Power Phase L2 (Q2)	Т6	
35654	35655	Reactive Power Phase L3 (Q3)	Т6	
35656	35657	Apparent Power Total (St)	T5	
35658	35659	Apparent Power Phase L1 (S1)	T5	
35660	35661	Apparent Power Phase L2 (S2)	T5	
35662	35663	Apparent Power Phase L3 (S3)	T5	
35664	35665	Power Factor Total (PFt)	T7	
35666	35667	Power Factor Phase 1 (PF1)	T7	
35668	35669	Power Factor Phase 2 (PF2)	T7	
35670	35671	Power Factor Phase 3 (PF3)	T7	
35672		Power Angle Total (atan2(Pt,Qt))	T17	
35673		j1 (angle between U1 and I1)	T17	
35674		j2 (angle between U2 and I2)	T17	

Address	Contents	Data	Ind	Values / Dependencies
Address	Input Registers			

		AVERAGE MEASUREMENTS		
35675		j3 (angle between U3 and I3)	T17	
35681		Internal Temperature	T17	
		THD HARMONIC DATA		
35682		U1 THD%	T16	
35683		U2 THD%	T16	
35684		U3 THD%	T16	
35685		U12 THD%	T16	
35686		U23 THD%	T16	
35687		U31 THD%	T16	
35688		I1 THD%	T16	
35689		12 THD%	T16	
35690		13 THD%	T16	
		MINIMUM MEASUREMENTS		
35700	35704	Reserved		
35705	35706	Frequency	T5	
35707	35708	U1	T5	
35709	35710	U2	T5	
35711	35712	U3	T5	
35713	35714	Uavg (phase to neutral)	T5	
35715		j12 (angle between U1 and U2)	T17	
35716		j23 (angle between U2 and U3)	T17	
35717		j31 (angle between U3 and U1)	T17	
35718	35719	U12	T5	
35720	35721	U23	T5	
35722	35723	U31	T5	
35724	35725	Uavg (phase to phase)	T5	
35726	35727	11	T5	
35728	35729	12	T5	
35730	35731	13	T5	
35736	35737	lavg	T5	
35738	35739	S I	T5	
35740	35741	Active Power Total (Pt)	Т6	
35742	35743	Active Power Phase L1 (P1)	Т6	
35744	35745	Active Power Phase L2 (P2)	Т6	
35746	35747	Active Power Phase L3 (P3)	Т6	
35748	35749	Reactive Power Total (Qt)	Т6	
35750	35751	Reactive Power Phase L1 (Q1)	Т6	
35752	35753	Reactive Power Phase L2 (Q2)	Т6	
35754	35755	Reactive Power Phase L3 (Q3)	Т6	
35756	35757	Apparent Power Total (St)	T5	
35758	35759	Apparent Power Phase L1 (S1)	T5	
35760	35761	Apparent Power Phase L2 (S2)	T5	
35762	35763	Apparent Power Phase L3 (S3)	T5	
35764	35765	Power Factor Total (PFt)	T7	
35766	35767	Power Factor Phase 1 (PF1)	Τ7	
35768	35769	Power Factor Phase 2 (PF2)	Τ7	
35770	35771	Power Factor Phase 3 (PF3)	T7	

	Address	Contents	Data	Ind	Values / Dependencies
--	---------	----------	------	-----	-----------------------

		Input Registers		
		AVERAGE MEASUREMENTS		
35772		Power Angle Total (atan2(Pt,Qt))	T17	
35773		j1 (angle between U1 and I1)	T17	
35774		j2 (angle between U2 and I2)	T17	
35775		j3 (angle between U3 and I3)	T17	
35781		Internal Temperature	T17	
		THD HARMONIC DATA		
35782		U1 THD%	T16	
35783		U2 THD%	T16	
35784		U3 THD%	T16	
35785		U12 THD%	T16	
35786		U23 THD%	T16	
35787		U31 THD%	T16	
35788		I1 THD%	T16	
35789		I2 THD%	T16	
35790		I3 THD%	T16	
RAM logg	er			
36000		Measurement parameter	T1	See OutTypes
36001		Time interval	T1	minuteas
36002		Number of valid results	T1	
36003		Time stamp of last result	T2	minutes since midnight (<0 if no time)
36004	36131	Logger table (newest to oldest)	T17	Normalised values

SETTINGS

		SYSTEM COMMANDS						
40001	40002	User Password (L1, L2)	T_Str4	AZ	Password to attempt user access			0
					level upgrade			
40003	40005	Factory Password (FAC)	T_Str6	AZ	Password to attempt factory			0
					access level upgrade			
40006	40007	Lavel 1 - User password	T_Str4	AZ				1
40008	40009	Lavel 2 - User password	T_Str4	AZ				2
40010	40010	Active Acces Level	T1	0	Full protection	0	0	0
				1	Access up to level 1 user			
					password			
				2	Access up to level 2 user			
					password			
				3	Access up to level 2 (backup pass.)			
				4	Factory access level			
40011		Manual password activation	T1	1	Lock instrument			0
40012		Operator Command Register	T1	1	Save Settings	1	5	1
				2	Abort Settings			
				3	Restart Instrument			
40014		Reset command register 2	T1	Bit-0	Reset alarm ouptut relay 1			1
				Bit-1	Reset alarm ouptut relay 2			
				Bit-8	Reset alarm ouptut IR			
40015		IR external relay command		0	Off	0	1	0
		action						
				1	On			
40030		Select Active Tariff	T1			1	6	1

40031		Reset energy command register 1	T1	Bit-07	Reset counter 1 8	0	65535	1
		±		Bit-	Reset counter 9 16			
				815				
40032		Reset energy command register 2	T1	Bit-i	Reset counter i+17	0	65535	1
		INSTALATION SETTINGS						
40051	40052	Instalation Password	T_Str4	AZ	Password to attempt instalation			0
			_		access level			
40053		Connection and Total Energy	T1	0	Not set	0	3	0
		Calculation						
				1	4u, 1b, 3u(3W3) – Vector			
				2	4u, 1b - Aritmetic			
				3	3u(2W3) - Vector			
		GENERAL SETTINGS						
40101	40120	Description	T_Str40					2
40121	40140	Location	T_Str40					2
40143		Conection Mode	T1	0	No mode	1	5	2
				1	1b - Single Phase			
				2	3b - 3 phase 3 wire balanced			
				3	4b - 3 phase 4 wire balanced			
				4	3u - 3 phase 3 wire unbalanced			
				5	4u - 3 phase 4 wire unbalanced			
40144		CT Secundary	T4		mA			2
40145		CT Primary	T4		A/10			2
40146		VT Secundary	T4		mV			2
40147		VT Primary	T4		V/10			2
40148		Current input range (%)	T16		10000 for 100%	5,00	260,00	2
40149		Voltage input range (%)	T16		10000 for 100%	2,50	100,00	2
40150		Frequency nominal value	T1		Hz	50	50	2
40151		CT connection	T1	Bit-0	Disable display "Wrong connection"			2
				Bit-1	Reverse Energy flow direction			
				Bit-2	Reverse CT connection			
40161	40162	Time	Т9					1
40163	40164	Date	T10					1
40166		Automatic change S/W time	T1	0	No	0	1	1
40170		LCD configurations	T1	Bit O	Counter description mode (*0=OBIS code; 1=letters)	0	1	2
40171		LCD Contrast	T2			-10	10	2
40172		LCD Back Light Intesnity	T1		0=No Backlight	0	10	2
40173		LCD Back Light Time Off	T1		Minutes (0=Always on)	0	60	2
40174		LCD scroll interval	T1		Seconds	5	60	2
40175		LCD Custom screen 1 - Line 1	T1		See OutTypes	0	100	2
40176		LCD Custom screen 1 - Line 2	T1		See OutTypes	0	100	2
40177		LCD Custom screen 1 - Line 3	T1		See OutTypes	0	100	2
40178		LCD Custom screen 2 - Line 1	T1		See OutTypes	0	100	2
40179		LCD Custom screen 2 - Line 2	T1		See OutTypes	0	100	2

40180	LCD Custom screen 2 - Line 3	T1		See OutTypes	0	100	2
40181	LCD Custom screen 3 - Line 1	T1		See OutTypes	0	100	2
40182	LCD Custom screen 3 - Line 2	T1		See OutTypes	0	100	2
40183	LCD Custom screen 3 - Line 3	T1		See OutTypes	0	100	2
40184	LCD scroll parameters 1	T1	Bit O	Counter n1 (Allways)	1	65535	2
			Bit 1	Counter n2			
			Bit 2	Counter n3			
			Bit 3	Counter n4			
40185	LCD scroll parameters 2		Bit 07	Counter 1 8	0	65535	2
			Bit	Counter 9 16			
			815				
40186	LCD scroll parameters 3		Bit O	Active Power Total (Pt)	0	65535	2
			Bit 1	Active Power P1 P3 (P12)			
			Bit 2	Reactive Power Total (Qt)			
			Bit 3	Reactive Power Q1 Q3 (Q12)			
			Bit 4	Apparent Power Total (St)			
			Bit 5	Apparent Power S1 S3 (S12)			
			Bit 6	Uavg (phase to neutral)			
			Bit 7	Voltage U1 U3			
			Bit 8	Uavg (phase to phase)			
			Bit 9	Voltage U12 U31			
			Bit 10	Curent Total			
			Bit 11	Curent I1 I3 (I12)			
			Bit 12	Frequency			
			Bit 13	Active Tariff			
			Bit 14	Power Factor Total (PFt)			
			Bit 15	Power Factor PF1 PF3 (PF12)			
40187	LCD scroll parameters 4		Bit O	Power Angle Total (atan2(Pt,Qt))	0	31	2
			Bit 1	Power Angle 1 3 (12)			
			Bit 2	THD of voltage			
			Bit 3	THD of current			
			Bit 4	Clock			
40188	LCD return mode	T1	0	Auto scroll	0	2	2
40192	Comm. & LCD average interval	T1		10=1,0 sec	0,1	5,0	2
40193	Touch Key Control	T1	Bit O	Touch Key Lock enable	0	1	2

Add	lress	Contents	Data	Ind	Values	min	max	P. Level
		COMMUNICATION						
40202		Port 1: Device Adress (Modbus)	T1			1	247	2
40203		Port 1: Boud Rate	T1	0	Baud rate 1200	1	7	2
				1	Baud rate 2400			
				2	Baud rate 4800			
				3	Baud rate 9600			
				4	Baud rate 19200			
				5	Baud rate 38400			
				6	Baud rate 57600			
				7	Baud rate 115200			
40204		Port 1: Stop Bit	T1	0	1 Stop bit	0	1	2
				1	2 Stop bits			-
40205		Port 1: Parity	T1	0	No parity	0	2	2
				1	Odd parity			
				2	Even parity			
40206		Port 1: Data Bits	T1	0	8 bits	0	0	2
				1	7 bits			
40207		Port 1: TCP Port	T1			1	65535	2
40208	40227	Port 1: IP Host name	T_Str40					2
40228	40229	Port 1: IP Address	T_Hex4					0
40230	40231	Port 1: Subnet Mask	T_Hex4					0
40232	40233	Port 1: Default Router	T_Hex4					2
40234	40241	WIFI password	T_Str16					2
40242	40249	WIFI SSID	T_Str16					2
40250		Bluetooth ON/OFF	T1	0	Off			2
				1	On			
		IR						
40251		res. for Port 2: Device Adress (DNP3)	T1			0	65519	2
40252		Port 2: Device Adress (Modbus)	T1			1	247	2
40253		Port 2: Boud Rate	T1		see Port 1: Boud Rate	3	7	2
40254		Port 2: Stop Bit	T1		see Port 1: Stop Bit	0	1	2
40255		Port 2: Parity	T1		see Port 1: Parity	0	2	2
40256		Port 2: Data Bits	T1		see Port 1: Data Bits	0	0	2
40257	40270	Reserved						
		M-bus						
40271		M-bus Primary address	T1			0	250	2
40272		M-bus: Boud Rate	T1	0	Baud rate 300	1	5	2
				1	Baud rate 600			
				2	Baud rate 1200			
				3	Baud rate 2400			
				4	Baud rate 4800			
				5	Baud rate 9600			
40273	40274	M-bus Secondary address	Т3		Digits only (Default = Serial number)	0	999999999	2
40202		Port 1: Device Adress (Modbus)	T1		,	1	247	2
40203		Port 1: Boud Rate	T1	0	Baud rate 1200	1	7	2

				1	Baud rate 2400			
				4	Baud rate 4800			
				5	Baud rate 9600			
40273	40274	M-bus Secondary address	Т3		Digits only (Default = Serial	0	999999999	2
					number)			

Add	ress	Contents	Data	Ind	Values	min	max	P. Level
		ENERGY						
40401		Active Tariff	T1	0	Tariff input	0	6	1
				14	Tariff 14			
				56	Tariff 56			
40402		Common Energy Counter	T2			-3	4	2
		Exponent						
40403	40418	Reserved						
40419		Total Energy Calculation	T1	0	Evaluation of the sum of phases	0	1	2
				1	Evaluation of individual phases			
40420		Reactive power calculation	T1	0	Standard calculation	0	1	2
40420			11	0	(Q^2=S^2-P^2)	0	L	2
				1	Delayed Current method			
		NON-RESETABLE COUNTERS						
40421		Energy Counter n1 Parameter	T1	0	No Parameter	0	95	2
				1	Active Power			
				2	Reactive pover			
				3	Apparent Power			
				5	Active Power Phase 1			
				6	Reactive pover Phase 1			
				7	Apparent Power Phase 1			
				9	Active Power Phase 2			
				10	Reactive pover Phase 2			
				11	Apparent Power Phase 2			
				13	Active Power Phase 3			
				14	Reactive pover Phase 3			
				15	Apparent Power Phase 3			
				33	Active Power individual			
					phases			
				34	Reactive Power individual phases			
				35	Apparent Power individual			
					phases			
40422		Energy Counter n1 Configuration	T1	Bit-0	Quadrant I Enabled	0	63	2
				Bit-1	Quadrant II Enabled			
				Bit-2	Quadrant III Enabled			
				Bit-3	Quadrant IIII Enabled			
				Bit-4	Absolute Value			
				Bit-5	Invert Value			
40423		Energy Counter n1 Exponent	T2			-3	6	2
40424		Energy Counter n1 Tarif Selector	T1	Bit-0	Tarif 1 Enabled	0	63	2
				Bit-1	Tarif 2 Enabled			
				Bit-2	Tarif 3 Enabled			
				Bit-3	Tarif 4 Enabled			
				Bit-4	Tarif 5 Enabled			
				Bit-5	Tarif 6 Enabled			
40425		Energy Counter n2 Parameter	T1		see Energy Counter n1	0	95	2
					Parameter			

40426	Energy Counter n2 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40427	Energy Counter n2 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40428	Energy Counter n2 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40429	Energy Counter n3 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40430	Energy Counter n3 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40431	Energy Counter n3 Exponent	Т2	see Energy Counter n1 Exponent	-3	6	2
40432	Energy Counter n3 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40433	Energy Counter n4 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40434	Energy Counter n4 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40435	Energy Counter n4 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40436	Energy Counter n4 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
	RESETABLE COUNTERS					
40437	Energy Counter 1 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40438	Energy Counter 1 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40439	Energy Counter 1 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40440	Energy Counter 1 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40441	Energy Counter 2 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40442	Energy Counter 2 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40443	Energy Counter 2 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40444	Energy Counter 2 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40445	Energy Counter 3 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40446	Energy Counter 3 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40447	Energy Counter 3 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40448	Energy Counter 3 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40449	Energy Counter 4 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40450	Energy Counter 4 Configuration	T1	see Energy Counter n1 Configuration	0	63	2

40451		Energy Counter 4 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40452		Energy Counter 4 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40453		Energy Counter 5 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40454		Energy Counter 5 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40455		Energy Counter 5 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40456		Energy Counter 5 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40457		Energy Counter 6 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40458		Energy Counter 6 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40459		Energy Counter 6 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40460		Energy Counter 6 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40461		Energy Counter 7 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40462		Energy Counter 7 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40463		Energy Counter 7 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40464		Energy Counter 7 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40465		Energy Counter 8 Parameter	T1	see Energy Counter n1 Parameter	0	95	2
40466		Energy Counter 8 Configuration	T1	see Energy Counter n1 Configuration	0	63	2
40467		Energy Counter 8 Exponent	T2	see Energy Counter n1 Exponent	-3	6	2
40468		Energy Counter 8 Tarif Selector	T1	see Energy Counter n1 Tarif Selector	0	63	2
40469	40472	Energy Counter 9		see Energy Counter n1			2
40473	40476	Energy Counter 10		see Energy Counter n1			2
40477	40480	Energy Counter 11		see Energy Counter n1			2
40481	40484	Energy Counter 12		see Energy Counter n1			2
40485	40488	Energy Counter 13		see Energy Counter n1			2
40489	40492	Energy Counter 14		see Energy Counter n1			2
40493	40496	Energy Counter 15		see Energy Counter n1			2
40497	40500	Energy Counter 16		see Energy Counter n1			2

SUPPORTED FUNCTIONS AND USAGE

	Code HEX	Function	References
3	03	to read from holding registers	(4XXXX memory references)
4	04	to read from input registers	(3XXXX memory references)
6	06	to write to a single holding register	(4XXXX memory references)
16	10	to write to one or more holding register	(4XXXX memory references)

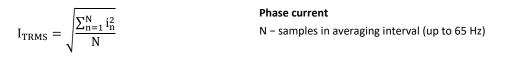
DATA TYPES DECODING

Registers defined in the Modbus database will define data as one of the data types described in the following table:

Туре	Value / Bit Mask	Description
T1		Unsigned Value (16 bit)
T2		Example: 12345 stored as 12345 = 3039 ₍₁₆₎ Signed Value (16 bit)
		Example: -12345 stored as -12345 = CFC7 ₍₁₆₎
Т3		Signed Long Value (32 bit) Example: 123456789 stored as 123456789 = 075B CD 15 ₍₁₆₎
Τ4	bits # 1514 bits # 1300	Short Unsigned float (16 bit) Decade Exponent(Unsigned 2 bit) Binary Unsigned Value (14 bit) Example: 10000*10 ² stored as A710 ₍₁₆₎

Туре	Value / Bit Mask	Description
T5		Unsigned Measurement (32 bit)
	bits # 3124	Decade Exponent(Signed 8 bit)
	bits # 2300	Binary Unsigned Value (24 bit)
		Example: 123456*10 ⁻³ stored as FD01 E240 ₍₁₆₎
Т6		Signed Measurement (32 bit)
	bits # 3124	Decade Exponent (Signed 8 bit)
	bits # 2300	Binary Signed value (24 bit)
		Example: - 123456*10 ⁻³ stored as FDFE 1DC0 ₍₁₆₎
Т7		Power Factor (32 bit)
	bits # 3124	Sign: Import/Export (00/FF)
	bits # 2316	Sign: Inductive/Capacitive (00/FF)
	bits # 1500	Unsigned Value (16 bit), 4 decimal places
		Example: 0.9876 CAP stored as 00FF 2694(16)
Т8		Time stamp (32 bit)
	bits # 3124	Minutes 00 - 59 (BCD)
	bits # 2316	Hours 00 - 23 (BCD)
	bits # 1508	Day of month 01 - 31 (BCD)
	bits # 0700	Month of year 01 - 12 (BCD)
		Example: 15:42, 1. SEP stored as 4215 0109(16)
Т9		Time (32 bit)
	bits # 3124	1/100s 00 - 99 (BCD)
	bits # 2316	Seconds 00 - 59 (BCD)
	bits # 1508	Minutes 00 - 59 (BCD)
	bits # 0700	Hours 00 - 24 (BCD)
		Example: 15:42:03.75 stored as 7503 4215(16)
Т10		Date (32 bit)
	bits # 3124	Day of month 01 - 31 (BCD)
	bits # 2316	Month of year 01 - 12 (BCD)
	bits # 1500	Year (unsigned integer) 19984095
		Example: 10, SEP 2000 stored as 1009 07D0(16)
T_Str4		Text String 4 characters
(T11)		Two characters per 16 bit register
T_Str6		Text String 6 characters
(T12)		Two charcters per 16 bit register
T_Str8		Text String 8 characters Two characters per 16 bit register.
T_Str16		Text String 16 characters
1_50110		Two characters per 16 bit register.
T_Str20		Text String 20 characters
		Two characters per 16 bit register.
T16		Unsigned Value (16 bit), 2 decimal places
		Example: 123.45 stored as 123.45 = 3039 ₍₁₆₎
T17		Signed Value (16 bit), 2 decimal places
=-		Example: -123.45 stored as -123.45 = $CFC7_{(16)}$

Туре	Value / Bit Mask	Description
T_Time		Time and Date (64 bit)
_	bits # 6356	1/100s 00 - 99 (BCD)
	bits # 5548	Seconds 00 - 59 (BCD)
	bits # 4740	Minutes 00 - 59 (BCD)
	bits # 3932	Hours 00 - 24 (BCD)
	bits # 3124	Day of month 01 - 31 (BCD)
	bits # 2316	Month of year 01 - 12 (BCD)
	bits # 1500	Year (unsigned integer) 1998. 4095
	DILS # 1500	
		Example: 15:42:03.75, 10. SEP 2000 stored as 7503 4215 1009 07D0 ₍₁₆₎
T_TimeIEC		Time and Date (64 bit) = IEC870-5-4 "Binary Time 2a"
	bits # 6355	Reserved
	bits # 5448	Years (0 99)
	bits # 4744	Reserved
	bits # 4340	Months (112)
	bits # 3937	Day of Week (17)
	bits # 3632	Day of Month (131)
	bit # 31	Summer Time (0 1): Summer time (1), Standard time (0)
	bits # 3029	Reserved
	bits # 2824	Hours (0 23)
	bit # 23	Invalid (0 1): Invalid (1), Valid (0)
	bit # 22	Reserved
	bits # 2116	Minutes (0 59)
	bits # 1500	Miliseconds (0 59999)
		Example: 15:42, 1. SEP stored as 4215 0109(16)
T_Data		Record Data
		Size and SubTypes depends on the Actual Memory Part
T_Str40		Text String 40 characters
		Two characters per 16 bit register.
T_float		IEEE 754 Floating-Point Single Precision Value (32 bit)
1_Hour	bits # 31	Sign Bit (1 bit)
	bits # 3023	Exponent Field (8 bit)
	bits # 220	Significand (23 bit)
		Example: 123.45 stored as $123.45000 = 42F6 E666_{(16)}$
Т9А		Time (16 bit)
	bits # 1508	Minutes 00 - 59 (BCD)
	bits # 0700	Hours 00 - 24 (BCD)
	513 1 07.00	Example: 15:42 stored as 4215(16)
T10A		Date (16 bit)
TIUA	bits # 1508	Day of month 00 - 31 (BCD)
	bits # 0700	Month of year 00 - 12 (BCD)
	5113 # 0700	Example: 30, SEP stored as 3009 ₍₁₆₎
T18		Signed Value (16 bit), 4 decimal places
.10		Example: -0.2345 stored as -2345 = $F6D7_{(16)}$
T unix		Unix time (32 bit)
	Bits # 3100	Seconds since January 1, 1970
		Example: 16 May 2012 10:36:46 GMT stored as 4FB3 833E ₍₁₆₎
	1	


10.2 Appendix C: Equations

Number	Symbol	Definition
1	МР	Average interval
2	U _f	Phase voltage (U ₁ , U ₂ or U ₃)
3	U _{ff}	Phase-to-phase voltage (U_{12} , U_{23} or U_{31})
4	N	Total number of samples in a period
5	n	Sample number ($0 \le n \le N$)
6	х, у	Phase number (1, 2 or 3)
7	i _n	Current sample n
8	U _{fn}	Phase voltage sample n
9	U _{ffn}	Phase-to-phase voltage sample n
10	${oldsymbol{\phi}}_{f}$	Power angle between current and phase voltage f (ϕ_1 , ϕ_2 or ϕ_3)

Voltage

$U_{f} = \sqrt{\frac{\sum_{n=1}^{N} u_{n}^{2}}{N}}$	Phase voltage N – samples in averaging interval (up to 65 Hz)
$U_{xy} = \sqrt{\frac{\sum_{n=1}^{N} (u_{xn} - u_{yn})^2}{N}}$	Phase-to-phase voltage u _x , u _y – phase voltages (U _f) N – a number of samples in averaging interval

Current

Power

$P_f = \frac{1}{N} \sum_{n=1}^{N} (u_{fn} \times i_{fn})$	Active power by phases N – a number of periods n – index of sample in a period f – phase designation
$P_t = P_1 + P_2 + P_3$	Total active power t – total power 1, 2, 3 – phase designation
Sign $Q_f(\phi)$ $\phi \in [0^\circ - 180^\circ] \rightarrow \text{Sign}Q_f(\phi) = +1$ $\phi \in [180^\circ - 360^\circ] \rightarrow \text{Sign}Q_f(\phi) = -1$	Reactive power sign Q _f – reactive power (by phases) ☑ – power angle
$S = U_f \cdot I_f$	Apparent power by phases U _f – phase voltage I _f – phase current
$S_t = S_1 + S_2 + S_3$	Total apparent power S _t – apparent power by phases
$Q_f = SignQ(\varphi) \times \sqrt{{S_f}^2 - {P_f}^2}$	Reactive power by phases S _f – apparent power by phases P _f – active power by phases
$Q_f = \frac{1}{N} \cdot \sum_{n=1}^{N} (u_{fn} \times i_{f[n+N/4]})$	Reactive power by phases (displacement method) N – a number of samples in a period n – sample number ($0 \le n \le N$) f – phase designation
$Q_t = Q_1 + Q_2 + Q_3$	Total reactive power Q _t – reactive power by phases
$\varphi_s = a \tan 2 \left(P_f, Q_f \right)$ $\varphi_s = [-180^\circ, 179, 99^\circ]$	Total power angle P _t – total active power Q _t – total reactive power
$PF = \frac{ P }{S}$	Distortion power factor P – active power S –apparent power

$I_f THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} I_{fn}^2}}{I_{f1}} 100$	Current THD I ₁ – value of first harmonic n – number of harmonic
$U_f THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} U_{fn}^2}}{U_{f1}} 100$	Phase voltage THD U ₁ – value of first harmonic n – number of harmonic